ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2018-85-05-07-12

УДК: 535.21, 538.915

Intrinsic optical breakdown of dielectrics with electrostatic breaking of crystal lattice bonds

For Russian citation (Opticheskii Zhurnal):

Комолов В.Л. Собственный оптический пробой диэлектриков при электростатическом разрыве связей кристаллической решетки // Оптический журнал. 2018. Т. 85. № 5. С. 7–12. http://doi.org/10.17586/1023-5086-2018-85-05-07-12

 

Komolov V.L. Intrinsic optical breakdown of dielectrics with electrostatic breaking of crystal lattice bonds [in Russian] // Opticheskii Zhurnal. 2018. V. 85. № 5. P. 7–12. http://doi.org/10.17586/1023-5086-2018-85-05-07-12

For citation (Journal of Optical Technology):

V. L. Komolov, "Intrinsic optical breakdown of dielectrics with electrostatic breaking of crystal lattice bonds," Journal of Optical Technology. 85(5), 259-263 (2018). https://doi.org/10.1364/JOT.85.000259

Abstract:

Based on a critical analysis of the experimental properties of the optical breakdown of wide bandgap dielectrics, an approach to building a nonthermal model of the breakdown process is proposed. The approach is based on the assumption that the electric field strength of the light wave is sufficiently high for direct mechanical destruction of the crystal lattice by electrostatic forces.

Keywords:

optical breakdown, lattice binding energy, spatial redistribution of charge

Acknowledgements:

The author of the article is deeply grateful to S. G. Przhibel’skiı˘ for useful comments on the formulation and discussion of the problem and valuable recommendations in the process of its analysis.

OCIS codes: 140.3330, 320.2250

References:

1. A. A. Manenkov and A. M. Prokhorov, “Laser damage of transparent solids,” Sov. Phys. Usp. 29(1), 104–122 (1986) [Usp. Fiz. Nauk 148, 179–211 (1986)].

2. V. P. Veı˘ko, M. N. Libenson, G. G. Chervyakov, and E. B. Yakovlev, in Interaction of Laser Radiation with Matter: Power Optics (Fizmatlit, Moscow, 2008).
3. O. M. Efimov, “Nonlinear absorption of laser radiation and optical breakdown of silicate glasses,” Ph.D. Dissertation (GOI, Leningrad, 1985).
4. O. M. Efimov, “Nonlinear generation of defects in silicate glasses,” in Sc.D. Dissertation (GOI, St. Petersburg, 1995).
5. L. B. Glebov and O. M. Efimov, “Investigation of properties and mechanism of intrinsic breakdown,” Izv. Akad. Nauk SSSR 49(6), 1140–1145 (1985).
6. O. M. Efimov, “Self-optical breakdown and multipulse optical breakdown of transparent insulators in the femto-nanosecond region of laser pulse widths,” J. Opt. Technol. 71(6), 338–347 (2004) [Opt. Zh. 71(6), 6–17 (2004)].
7. O. M. Efimov, “Self-focusing of tightly focused laser beams,” Appl. Opt. 54(22), 6895–6903 (2015).
8. V. E. Gruzdev, “New aspects of laser-induced ionization of wide bandgap solids,” in Laser Ablation and Its Applications, C. H. Phipps, ed. (Springer, Boston, 2007), pp. 97–119.
9. L. B. Glebov, O. M. Efimov, M. N. Libenson, and G. T. Petrovskiı˘, “New concepts of self breakdown of transparent dielectrics,” Dokl. Akad. Nauk SSSR 287(5), 1114–1118 (1986).
10. Y. A. Imas, “Optical breakdown of transparent dielectrics (review of experimental works),” Preprint No. 13 (Institute of Heat and Mass Transfer of the Academy of Sciences of the BSSR, Minsk, 1982).
11. W. Rogowski, “Molekulare und technische Durchschlagfeldstarke fester elektrischer Isolatoren,” Arch. Elektrotech. 18, 123–166 (1927).
12. A. S. Zingerman, “Mechanism and theory of breakdown of solid dielectrics,” Usp. Fiz. Nauk 46(4), 450–507 (1952).
13. V. A. Chuenkov, “Current state of the theory of electric breakdown of solid dielectrics,” Usp. Fiz. Nauk 54(2), 185–230 (1954).
14. A. A. Manenkov, “Fundamental mechanisms of laser-induced damage in optical materials: today’s state of understanding and problems,” Opt. Eng. 53(1), 010901 (2014).
15. N. Kuzuu, K. Yoshida, H. Yoshida, T. Kamimura, and N. Kamisugi, “Laser-induced bulk damage in various types of vitreous silica at 1064, 532, 355, and 266 nm: evidence of different damage mechanisms between 266-nm and longer wavelengths,” Appl. Opt. 38, 2510–2515 (1999).
16. D. Homoelle, S. Wielandy, and A. L. Gaeta, “Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses,” Opt. Lett. 24(18), 1311–1313 (1999).
17. O. M. Efimov, S. Juodkazis, and H. Misawa, “Intrinsic single and multiple pulse laser-induced damage in silicate glasses in the femtosecond-to-nanosecond region,” Phys. Rev. A 69(4), 042903 (2004).
18. E. Gamaly, B. Luther-Davies, A. Rode, S. Joudkazis, H. Misawa, L. Hallo, Ph. Nicolai, and V. Tikhonchuk, “Laser-matter interaction in the bulk of transparent dielectrics: confined micro-explosion,” J. Phys. Conf. Ser. 59, 5–10 (2007).
19. A. Smith, B. T. Do, and M. Soderlund, “Nanosecond laser-induced breakdown in pure and Yb3+ doped fused silica,” Proc. SPIE 6403, 640321 (2007).
20. V. Smith and B. T. Do, “Bulk and surface laser damage of silica by picosecond and nanosecond pulses at 1064 nm,” Appl. Opt. 47(26), 4812 (2008).
21. M. Sozet, J. Neauport, E. Lavastre, N. Roquin, L. Gallais, and L. Lamaignère, “Laser damage growth with picosecond pulses,” Opt. Lett. 41(10), 2342 (2016).
22. J. Huang, H. Liu, F. Wang, X. Ye, L. Sun, X. Zhou, Z. Wu, X. Jiang, W. Zheng, and D. Sun, “Influence of bulk defects on bulk damage performance of fused silica optics at 355 nm nanosecond pulse laser,” Opt. Express 25, 33416–33428 (2017).