ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2018-85-06-12-16

УДК: 535-14

Principles of creation of a tunable terahertz laser with lasing at a difference frequency in a nonlinear ZnGeP2 optical crystal

For Russian citation (Opticheskii Zhurnal):

Грибенюков А.И., Дёмин В.В., Половцев И.Г., Юдин Н.Н. Принципы создания перестраиваемого терагерцового лазера с генерацией излучения на разностной частоте в нелинейно-оптическом кристалле ZnGeP2 // Оптический журнал. 2018. Т. 85. № 6. С. 12–16. http://doi.org/10.17586/1023-5086-2018-85-06-12-16

 

Gribenyukov A.I., Dyomin V.V., Polovtsev I.G., Yudin N.N. Principles of creation of a tunable terahertz laser with lasing at a difference frequency in a nonlinear ZnGeP2 optical crystal [in Russian] // Opticheskii Zhurnal. 2018. V. 85. № 6. P. 12–16. http://doi.org/10.17586/1023-5086-2018-85-06-12-16  

For citation (Journal of Optical Technology):

A. I. Gribenyukov, V. V. Demin, I. G. Polovtsev, and N. N. Yudin, "Principles of creation of a tunable terahertz laser with lasing at a difference frequency in a nonlinear ZnGeP2 optical crystal," Journal of Optical Technology. 85(6), 322-325 (2018). https://doi.org/10.1364/JOT.85.000322

Abstract:

An optical system for conversion of mid-infrared laser radiation into terahertz radiation is proposed. The proposed system uses lasing with a wavelength of 2 μm in a holmium:yttrium–aluminum–garnet (Ho:YAG) laser in the first stage of the system, conversion of the Ho:YAG laser radiation in two parametric light sources based on ZnGeP2 single-crystals with fixed and tunable wavelengths in the range of 3–4.5 μm in the second stage, and conversion of the radiation of these two parametric sources in the 3–4.5-μm region into the terahertz range by generating difference-frequency radiation in the nonlinear ZnGeP2 optical crystal in the third stage. We estimate the characteristics of the output terahertz radiation.

Keywords:

nonlinear parametric frequency conversion, terahertz range, difference-frequency generator

Acknowledgements:

The research was supported by the Ministry of Education and Science of the Russian Federation (Minobrnauka) (state assignment, project No. 8.2712.2017/4.6).

OCIS codes: 190.4223

References:

1. G. Kh. Kitaeva, “Terahertz generation by means of optical lasers,” Laser Phys. Lett. 5(8), 559–576 (2008).
2. W. Shi, Y. J. Ding, N. Fernelius, and K. Vodopyanov, “Efficient, tunable, and coherent 0.18–5.27-THz source based on GaSe crystal,” Opt. Lett. 27(16), 1454–1456 (2002).
3. W. Shi and Y. J. Ding, “Continuously tunable and coherent terahertz radiation by means of phase-matched difference-frequency generation in zinc germanium phosphide,” Appl. Phys. Lett. 83, 848–850 (2003).
4. T. Tanabe, K. Suto, J. Nishizawa, and T. Sasaki, “Characteristics of terahertz wave generation from GaSe crystals,” J. Phys. D 37, 155–158 (2004).
5. C. Luo, K. Reimann, M. Woerner, and T. Elsaesser, “Nonlinear terahertz spectroscopy of semiconductor nanostructures,” Appl. Phys. A 78, 435–440 (2004).
6. W. Shi and Y. J. Ding, “A monochromatic and high-power terahertz source tunable in the ranges of 2.7–38.4 and 58.2–3540 μm for variety of potential applications,” Appl. Phys. Lett. 84, 1635–1637 (2004).
7. W. Shi, Y. J. Ding, and P. G. Schunemann, “Coherent terahertz waves based on difference-frequency generation in an annealed zinc-germanium phosphide crystal: improvements on tuning ranges and peak powers,” Opt. Commun. 233, 183–189 (2004).
8. N. G. Zakharov, O. L. Antipov, V. V. Sharkov, and A. P. Savikin, “Efficient generation at a wavelength of 2.1 μm in the laser crystal Ho:YAG pumped by radiation of a Tm:YLF-laser,” Quantum Electron. 40(2), 98–100 (2010).
9. R.-L. Zhou, Y.-L. Ju, W. Wang, G.-L. Zhu, and Y.-Z. Wang, “Acousto-optic Q-switched-operation Ho:YAP laser pumped by a Tm-doped fiber laser,” Chin. Phys. Lett. 28(7), 074210 (2011).
10. V. Smith, “SNLO nonlinear optics code,” Slate, http://www.as-photonics.com/SNLO (13 October 2009).
11. V. V. Apollonov, A. I. Gribenyukov, A. G. Suzdal’tsev, and Yu. A. Shakir, “Subtraction of the frequencies of CO 2 laser radiation in ZnGeP 2 crystal,” Quantum Electron. 26(6), 469–470 (1996).
12. E. M. Voronkova, B. N. Grechushnikov, G. I. Distler, and I. P. Petrov, Optical Materials for Infrared Technology (Science, Moscow, 1965).
13. R. Collier, K. Burkhart, and L. Lin, Optical Holography (Mir, Moscow, 1973).