DOI: 10.17586/1023-5086-2018-85-06-03-05
УДК: 535.233.2
Generalized Wien’s displacement law and Stefan–Boltzmann law for thermal radiation with a nonzero chemical potential
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Дубинов А.Е., Китаев И.Н. Обобщенные закон смещения Вина и закон Стефана–Больцмана для теплового излучения, имеющего ненулевой химический потенциал // Оптический журнал. 2018. Т. 85. № 6. С. 3–5. http://doi.org/10.17586/1023-5086-2018-85-06-03-05
Dubinov A.E., Kitaev I.N. Generalized Wien’s displacement law and Stefan–Boltzmann law for thermal radiation with a nonzero chemical potential [in Russian] // Opticheskii Zhurnal. 2018. V. 85. № 6. P. 3–5. http://doi.org/10.17586/1023-5086-2018-85-06-03-05
A. E. Dubinov and I. N. Kitaev, "Generalized Wien’s displacement law and Stefan–Boltzmann law for thermal radiation with a nonzero chemical potential," Journal of Optical Technology. 85(6), 314-316 (2018). https://doi.org/10.1364/JOT.85.000314
The exact mathematical expressions for the generalized Wien’s displacement and Stefan–Boltzmann laws for thermal radiation having a nonzero chemical potential are obtained.
Stefan–Boltzmann law, Wien’s displacement law, blackbody radiator
Acknowledgements:The authors are grateful to Peter Würfel for helpful discussions.
OCIS codes: 000.6800
References:1. L. D. Landau and E. M. Lifshitz, Theoretical Physics, 5: Statistical Mechanics (Nauka, Moscow, 1976).
2. S. R. Valluri, D. J. Jeffrey, and R. M. Corless, “Some applications of the Lambert W function to physics,” Can. J. Phys. 78(9), 823–831 (2000).
3. A. Vial, “Fall with linear drag and Wien’s displacement law: approximate solution and Lambert function,” Eur. J. Phys. 33(4), 751–755 (2012).
4. A. E. Dubinov, I. D. Dubinova, and S. K. Saı˘kov, Lambert W Function and Its Application in Mathematical Problems of Physics (Federal State Unitary Enterprise Russian Federal Nuclear Center—All Russia Scientific Research Institute for Experimental Physics, Sarov, 2006).
5. A. E. Dubinov and I. D. Dubinova, “How can one solve exactly some problems in plasma theory,” J. Plasma Phys. 71(5), 715–721 (2005).
6. A. M. Prokhorov, ed., Physical Encyclopedia, Vol. 4 (The Great Russian Encyclopedia, Moscow, 1994).
7. S. P. Rusin and V. É. Peletskiı˘, Thermal Radiation of Cavities (Énergoatomizdat, Moscow, 1987).
8. F. Herrmann and P. Würfel, “Light with nonzero chemical potential,” Am. J. Phys. 73(8), 717–721 (2005).
9. P. Würfel, “The chemical potential of radiation,” J. Phys. 15(18), 3967–3985 (1982).
10. T. Markvart, “The thermodynamics of optical étendue,” J. Opt. A 10(1), 015008 (2008).
11. Y. B. Zel’dovich, “Interaction of free electrons with electromagnetic radiation,” Usp. Fiz. Nauk 115(2), 181–197 (1975).
12. A. E. Dubinov, “Exact stationary solution of the Kompaneets kinetic equation,” Tech. Phys. Lett. 35(3), 260–262 (2009).
13. P. Würfel, Physics of Solar Cells (Wiley-Verlag, Weinheim, 2009).
14. W. Ruppel and P. Würfel, “Upper limit for the conversion of solar energy,” IEEE Trans. Electron Devices 27(1), 877–882 (1980).
15. T. Markvart, “Detailed balance for ideal single-stage fluorescent collectors,” J. Appl. Phys. 99(2), 026101 (2006).
16. T. Markvart, “Thermodynamics of losses in photovoltaic conversion,” Appl. Phys. Lett. 91(6), 064102 (2007).
17. A. E. Dubinov and A. A. Dubinova, “Nonlinear isothermal waves in a degenerate electron plasma,” Fiz. Plazmy 34(5), 442–452 (2008).
18. L. Lewin, Structural Properties of Polylogarithms (American Mathematical Society, Providence, RI, 1991).