DOI: 10.17586/1023-5086-2018-85-06-33-38
УДК: 004.932.2
Algorithm for detecting artificial objects against natural backgrounds
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Пронин С.В. Алгоритм детектирования искусственных объектов на природных фонах // Оптический журнал. 2018. Т. 85. № 6. С. 33–38. http://doi.org/10.17586/1023-5086-2018-85-06-33-38
Pronin S.V. Algorithm for detecting artificial objects against natural backgrounds [in Russian] // Opticheskii Zhurnal. 2018. V. 85. № 6. P. 33–38. http://doi.org/10.17586/1023-5086-2018-85-06-33-38
S. V. Pronin, "Algorithm for detecting artificial objects against natural backgrounds," Journal of Optical Technology. 85(6), 338-342 (2018). https://doi.org/10.1364/JOT.85.000338
This paper describes an algorithm for distinguishing between images of two classes of objects: artificial and natural. An approximation to the image is generated using graphical elements similar to the receptor fields of neurons in the primary visual cortex (Zone VI). We show that the approximation-error distribution for natural-object images lies at higher values of the approximation error than that for artificial-object images. This difference makes it possible to detect artificial objects against natural backgrounds.
image classification, receptor fields, visual alphabet, image preprocessing
OCIS codes: 100.3008, 100.4997, 330.5000
References:1. D. J. Field, “Relations between the statistics of natural images and the response properties of cortical cells,” J. Opt. Soc. Am. A 4, 2379–2394 (1987).
2. D. J. Field, “Scale-invariance and self-similar ‘wavelet’ transforms: an analysis of natural scenes and mammalian visual systems,” in Wavelets, Fractals, and Fourier Transforms, M. Farge and J. Hunt, eds. (Oxford University Press, Oxford, 1993), pp. 151–193.
3. E. V. Logunova, Yu. E. Shelepin, N. A. Shabalina, A. A. Britikov, and S. V. Pronin, “A study of the environmental safety of the visual environment,” Biotekhnosfera 1–2(31–32), 36–41 (2014).
4. S. Fukuda, “Image separation between natural and artificial objects using fractal dimension,” in MVA ’94 IAPR Workshop on Machine Vision Applications (Kawasaki, Dec. 13–15, 1994), pp. 368–370.
5. F. Espinal, T. L. Huntsberger, B. D. Jawerth, and T. Kubota, “Wavelet-based fractal signature analysis for automatic target recognition,” Opt. Eng. 37, 166–175 (1998).
6. B. Julesz, “Textons, the elements of texture perception, and their interactions,” Nature 290, 91–97 (1981).
7. D. Marr, Vision: A Computational Investigation into the Human Representation and Processing of Visual Information (W. H. Freeman, New York, 1983).
8. D. Marr and E. Hildreth, “Theory of edge detection,” Proc. R. Soc. B 207, 187–217 (1980).
9. S. G. Mallat and Z. Zhang, “Matching pursuits with time-frequency dictionaries,” IEEE Trans. Signal Process 41, 3397–3415 (1993).
10. F. Bergeaud and S. Mallat, “Matching pursuit of images,” in Proceedings of the IEEE International Conference on Image Processing (Washington, DC, October 1995), Vol. 1, pp. 53–56.
11. C. Guo, S.-C. Zhu, and Y. N. Wu, “Towards a mathematical theory of primal sketch and sketchability,” in Proceedings of the Ninth IEEE International Conference on Computer Vision (IEEE, 2003), pp. 1228–1235.
12. P. J. Burt and E. H. Adelson, “The Laplacian pyramid as a compact image code,” IEEE Trans. Commun. 31(4), 532–540 (1983).
13. R. Keys, “Cubic convolution interpolation for digital image processing,” IEEE Trans. Acoust. Speech Signal Process 29, 1153–1160 (1981).