DOI: 10.17586/1023-5086-2018-85-06-42-47
УДК: 681.785.574.065
Cemented-prism static Fourier spectrometers
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Егорова Л.В., Стариченкова В.Д., Таганов О.К. Статические фурье-спектрометры на основе призм-склеек // Оптический журнал. 2018. Т. 85. № 6. С. 42–47. http://doi.org/10.17586/1023-5086-2018-85-06-42-47
Egorova L.V., Starichenkova V.D., Taganov O.K. Cemented-prism static Fourier spectrometers [in Russian] // Opticheskii Zhurnal. 2018. V. 85. № 6. P. 42–47. http://doi.org/10.17586/1023-5086-2018-85-06-42-47
L. V. Egorova, V. D. Starichenkova, and O. K. Taganov, "Cemented-prism static Fourier spectrometers," Journal of Optical Technology. 85(6), 346-350 (2018). https://doi.org/10.1364/JOT.85.000346
In the 1980s, research expanded beyond the traditional path-difference scanning Fourier spectrometer, both in Russia and abroad, with the primary result being development of static Fourier spectrometers. These instruments enable the spectrum of a source to be obtained by recording and processing a spatially localized interferogram. A single optical module using cemented prisms provides better rigidity and tuning stability than the mirrors, beamsplitters, and dihedral prisms used in path-difference interferometers. Experience in the design and operation of cemented-prism static Fourier spectrometers has led to an interest in exploring the range of existing spectrometers and conducting a comparative analysis.
static Fourier spectrometers, interferometers, cemented prisms
OCIS codes: 120.6200, 230.5480, 300.6300
References:1. L. V. Egorova, “Interference Spectrometer: Cemented Prism with Reverse Circular Ray Path (Sagnac),” Inventor’s Certificate No. 845548, Byull. Izobr. (20), 1 (1992).
2. J. S. Tyo and T. S. Turner, “Variable-retardance, Fourier-transform imaging spectropolarimeters for visible spectrum remote sensing,” Appl. Opt. 40, 1450–1458 (2001).
3. S. V. Gill, L. V. Egorova, I. E. Leshcheva, and A. Yu. Stroganova, “Study of the interference field of a static Fourier spectrometer,” Sov. J. Opt. Technol. 55, 12 (1988) [Opt. Mekh. Prom-st. (1), 10–14 (1988)].
4. L. V. Egorova, I. E. Leshcheva, B. N. Popov, and A. Yu. Stroganova, “Static fast-response Fourier spectrometer having a linear CCD image-forming system,” Sov. J. Opt. Technol. 56, 220–221 (1989) [Opt. Mekh. Prom-st. (4), 27–28 (1989)].
5. L. V. Egorova, I. E. Leshcheva, and B. N. Popov, “Use of Static Fourier spectrometers for monitoring the thickness of thin films,” Elektron. Prom-st (1), 44–45 (1990).
6. L. Egorova, D. Ermakov, D. Kuvalkin, and O. Taganov, “Static-type Fourier spectrometers,” Sov. J. Opt. Technol. 59, 65–74 (1992) [Opt. Mekh. Prom-st. (2), 3–14 (1992)].
7. L. Egorova, D. Ermakov, N. Kryukov, D. Kuvalkin, M. Robachevskiı˘, and O. Taganov, “Multichannel UV spectrophotometer with the Hartley transformation,” J. Opt. Technol. 62, 420–424 (1995) [Opt. Zh. (7), 10–14 (1995)].
8. P. Fellgett, “I.—les principes généraux des méthodes nouvelles en spectroscopie interférentielle—A propos de la théorie du spectromètre interférentiel multiplex,” J. Phys. Radium 19, 187–191 (1958).
9. R. Prat, “Spectrométrie et spectrographie interférentielles par dédoublement achromatique transversal de la source. I,” Opt. Acta 18, 213–244 (1971).
10. T. Okamoto, S. Kawata, and S. Minami, “Fourier transform spectrometer with a self-scanning photodiode array,” Appl. Opt. 23, 269–273 (1984).
11. L. V. Egorova, D. G. Kuvalkin, O. K. Taganov, and V. B. Yakovlev, “Interference spectrometer,” Russian Federation Patent No. 2083960 (1997).
12. J. B. Saunders, “A simple interferometric method for workshop testing of optics,” Appl. Opt. 9, 1623–1629 (1970).
13. M. Murty, “A compact lateral shearing interferometer based on the Michelson interferometer,” Appl. Opt. 9, 1146–1148 (1970).
14. V. I. Biryuleva, Yu. A. Bushev, M. A. Gershun, and L. V. Egorova, “Fixture for the cementing of a lightsplitter cube,” Sov. J. Opt. Technol. 50, 719–720 (1983) [Opt. Mekh. Prom-st. (11), 52–53 (1983)].
15. L. J. Otten, A. D. Meigs, B. A. Jones, P. Prinzing, D. S. Fronterhouse, R. G. Sellar, B. Rafert, and C. Hodge, “Engineering model for the MightySat II.1 hyperspectral imager,” Proc. SPIE 3221, 412–421 (1997).
16. J. G. Hirschberg and E. Kohen, “Pentaferometer: a solid Sagnac interferometer,” Appl. Opt. 38, 136–138 (1999).
17. Y. Ferrec, J. Taboury, H. Sauer, P. Chavel, P. Fournet, C. Coudrain, J. Deschamps, and J. Primot, “Experimental results from an airborne static Fourier transform imaging spectrometer,” Appl. Opt. 50, 5894–5904 (2011).
18. M. A. Gershun, A. E. Pavlova, and G. V. Pospelov, “Measurement of the thicknesses of thin transparent films by means of an interferometer having no moving optical-elements,” Sov. J. Opt. Technol. 51, 479–480 (1984) [Opt. Mekh. Prom-st. (8), 42–44 (1984)].
19. A. Yu. Boı˘ko, Ig. S. Golyak, Il. S. Golyak, S. K. Dvoruk, A. M. Dorovskih, A. A. Esakov, V. N. Kornienko, D. V. Kosenko, I. V. Kochikov, A. N. Morozov, S. I. Svetlichnyı˘, and S. E. Tabalin, “Static Fourier spectrometer for the visible and near-ultraviolet regions of the spectrum,” Vestn. MGTU im. M. E. Baumana Ser. Estestv. Nauki 3(34), 11–27 (2009).
20. I. S. Golyak, “Use of a Fourier spectrometer for sampleless analysis of chemical compounds,” Abstract of Candidate’s Dissertation, Russian Academy of Sciences Science and Technology Center for Unique Instrumentation (NTTs UP RAN), Moscow (2015).