DOI: 10.17586/1023-5086-2018-85-06-48-52
УДК: 621.373.826
Maximization of the signal-to-noise ratio for non-steady-state irradiation of a target using optical radar
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Головков В.А. Максимизация отношения сигнал/шум при нестационарном облучении цели оптическим локатором // Оптический журнал. 2018. Т. 85. № 6. С. 48–52. http://doi.org/10.17586/1023-5086-2018-85-06-48-52
Golovkov V.A. Maximization of the signal-to-noise ratio for non-steady-state irradiation of a target using optical radar [in Russian] // Opticheskii Zhurnal. 2018. V. 85. № 6. P. 48–52. http://doi.org/10.17586/1023-5086-2018-85-06-48-52
V. A. Golovkov, "Maximization of the signal-to-noise ratio for non-steady-state irradiation of a target using optical radar," Journal of Optical Technology. 85(6), 351-354 (2018). https://doi.org/10.1364/JOT.85.000351
The principles of optical signal extraction in optoelectronic radar are considered for non-steady-state target irradiation when optimal filtering becomes impossible. Furthermore, the waveform is in principle unknown, which can only be regarded as a short-term change in the mathematical expectation of a random interference process. The principles of constructing this kind of signal processing, the results of simulation, and physical modeling of the proposed algorithms are presented.
random process, non-steady-state irradiation of target, random process predicting, mathematical expectation extraction, simulation and physical modeling
OCIS codes: 120.0120
References:1. E. G. Lebed’ko, Pulsed Optical Location Systems (Lan’ Publishing House, SPb, 2014).
2. E. G. Lebed’ko and K. V. Trifonov, “Choice of the transmission bandwidth of the receive-amplifying path with optical location of sizable objects of a complex configuration,” Izv. Vuzov Priborostr. 59(1) 73–78 (2016).
3. S. I. Baskakov, Radio Engineering Circuits and Signals (Vysshaya Shkola, Moscow, 2000).
4. B. Widrow and S. Stearns, Adaptive Signal Processing (Prentice-Hall, Upper Saddle River, NJ, 1985).
5. V. A. Golovkov, “Compensation of interference with known characteristics in real time,” Izv. Vyssh. Uchebn. Zaved. Ross. Radioelektron. 5, 30–34 (2011).
6. V. A. Golovkov and M. V. Zykin, “Predicting a random process based on a sample of its derivatives,” Radiotekh. Elektron. 3, 1049–1053 (1993).
7. V. A. Golovkov, “Characteristics of predictive filters,” Izv. Vyssh. Uchebn. Zaved. Ross. Radioelectron. 2, 3–8 (2011).
8. Yu. A. Rozanov, Stationary Random Processes (Nauka, Moscow, 1990).
9. V. A. Golovkov, “Efficiency of compensation for interference in real time,” Izv. Vyssh. Uchebn. Zaved. Ross. Radioelectron. 5, 66–70 (2012).
10. V. A. Golovkov and V. A. Smirnov, “Interference compensation in optoelectronic devices using a Wiener-Hopf filter,” Izv. Vuzov Priborostr. 5, 62–66 (2010).