DOI: 10.17586/1023-5086-2018-85-06-06-11
Single reflection nanocavity enhanced transmission efficiency of nanoplasmonic wavelength demultiplexer
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Qi Ma, Guangqiang Liu, Yiqing Chen, Qian Zhao, Shaosong Yang, Jing Guo, Weiping Cai Single reflection nanocavity enhanced transmission efficiency of nanoplasmonic wavelength demultiplexer (Повышение эффективности пропускания каналов наноплазмонного волноводного демультиплексора с использованием единичного отражательного нанорезонатора) [на англ. яз.] // Оптический журнал. 2018. Т. 85. № 6. С. 6–11. http://doi.org/10.17586/1023-5086-2018-85-06-06-11
Qi Ma, Guangqiang Liu, Yiqing Chen, Qian Zhao, Shaosong Yang, Jing Guo, Weiping Cai Single reflection nanocavity enhanced transmission efficiency of nanoplasmonic wavelength demultiplexer (Повышение эффективности пропускания каналов наноплазмонного волноводного демультиплексора с использованием единичного отражательного нанорезонатора) [in English] // Opticheskii Zhurnal. 2018. V. 85. № 6. P. 6–11. http://doi.org/10.17586/1023-5086-2018-85-06-06-11
Qi Ma, Guangqiang Liu, Yiqing Chen, Qian Zhao, Shaosong Yang, Jing Guo, and Weiping Cai, "Single reflection nanocavity enhanced transmission efficiency of a nanoplasmonic wavelength demultiplexer," Journal of Optical Technology. 85(6), 317-321 (2018). https://doi.org/10.1364/JOT.85.000317
As a kind of nanostructure device, Surface Plasmon Polaritons (SPPs) nanostructure filter can realize the effective manipulation of photons at nanometer or subwavelength scale. Among them, kinds of resonator-based multiplexer channel drop filters have been proposed and studied widely. However, a main problem is that the transmission efficiencies of such filters are relatively low. Thus, reflection cavities are designed for enhancing the transmission efficiency obviously. However, traditional demultiplexer usually requires several reflection cavities, because only one mode is utilized in a reflection cavity. In this paper, single reflection cavity is firstly designed to enhance the transmission efficiency of three channels at the same time via utilizing multiple modes in the reflection cavity. The theory and simulation analysis confirm the validity of such structure, the transmission efficiency of the three channels can be doubled. We believe this work provides novel notions for the design for demultiplexer filter.
surface plasmons, wavelength filtering, multiplexing, subwave length
Acknowledgements:The research was supported by the National Key Research and Development Program of China (Grant No 2017YFA0207101), National Natural Science Foundation of China (Grant No. 51531006, 11574313, 11374300, and 51571188), Natural Science Foundation of Anhui Province (Grant No. 1508085MA16), and CAS/SAF International Partnership Program for Creative Research Teams.
OCIS codes: 240.6680, 130.7408, 060.4230, 030.4070
References:1. Noda S., Fujita M., Asano T. Spontaneous-emission control by photonic crystals and nanocavities // Nat. Photonics. 2007. № 1. P. 449–458.
2. Yamada K., Fukuda H., Tsuchizawa T., Watanabe T., Shoji T., Itabashi S. All-optical efficient wavelength conversion using silicon photonic wire waveguide // Ieee. Photonic. Tech. L. 2006. V. 18. P. 1046–1048.
3. Liu L., Han Z.H., He S.L. Novel surface plasmon waveguide for high integration // Opt. Express. 2005. V. 13. P. 6645–6650.
4. Barnes W.L., Dereux A., Ebbesen T.W. Surface plasmon subwavelength optics // Nature. 2003. V. 424. P. 824–830.
5. Bozhevolnyi S.I., Volkov V.S., Devaux E., Laluet J.Y., Ebbesen T.W. Channel plasmon subwavelength waveguide components including interferometers and ring resonators // Nature. 2006. V. 440. P. 508–511.
6. Gramotnev D.K., Bozhevolnyi S.I. Plasmonics beyond the diffraction limit // Nat. Photonics. 2010. V. 4. P. 83–91.
7. Wurtz G.A., Pollard R., Zayats A.V. Optical bistability in nonlinear surface-plasmon polaritonic crystals // Phys. Rev. Lett. 2006. V. 97. P. 057402.
8. Lu H., Liu X.M., Wang L.R., Gong Y.K., Mao D. Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator // Opt. Express. 2011. V. 19. P. 2910–2915.
9. Nikolajsen T., Leosson K., Bozhevolnyi S.I. Surface plasmon polariton based modulators and switches operating at telecom wavelengths // Appl. Phys. Lett. 2004. V. 85. P. 5833–5835.
10. Wang B., Wang G.P. Surface plasmon polariton propagation in nanoscale metal gap waveguides // Opt. Lett. 2004. V. 29. P. 1992–1994.
11. Min C., Wang P., Jiao X., Deng Y., Ming H. Beam focusing by metallic nano-slit array containing nonlinear material // Appl. Phys. B-Lasers O. 2008. V. 90. P. 97–99.
12. Yin L.L., Vlasko-Vlasov V.K., Pearson J., Hiller J.M., Hua J., Welp U., Brown D.E., Kimball C.W. Subwavelength focusing and guiding of surface plasmons // Nano Lett. 2005. V. 5. P. 1399–1402.
13. Yang S.Y., Chen W.B., Nelson R.L., Zhan Q.W. Miniature circular polarization analyzer with spiral plasmonic lens // Opt. Lett. 2009. V. 34. P. 3047–3049.
14. Enoch S., Quidant R., Badenes G. Optical sensing based on plasmon coupling in nanoparticle arrays // Opt. Express. 2004. V. 12. P. 3422–3427.
15. D. van Oosten, Spasenovic M., Kuipers L. Nanohole chains for directional and localized surface plasmon excitation // Nano Lett. 2010. V. 10. P. 286–290.
16. De Leon I., Berini P. Amplification of long-range surface plasmons by a dipolar gain medium // Nat. Photonics. 2010. V. 4. P. 382–387.
17. Gan Q.Q., Ding Y.J., Bartoli F.J. Rainbow trapping and releasing at telecommunication wavelengths // Phys. Rev. Lett. 2009. V. 102. P. 056801.
18. Park J., Kim H., Lee B. High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating // Opt. Express. 2008. V. 16. P. 413–425.
19. Wang B., Wang G.P. Plasmon Bragg reflectors and nanocavities on flat metallic surfaces // Appl. Phys. Lett. 2005. V. 87. P. 013107.
20. Randhawa S., Gonzalez M.U., Renger J., Enoch S., Quidant R. Design and properties of dielectric surface plasmon Bragg mirrors // Opt. Express. 2010. V. 18. P. 14496–14510.
21. Krasavin A.V., Zayats A.V. Silicon-based plasmonic waveguides // Opt Express. 2010. V 18. P. 11791–11799.
22. Dawson P., Defornel F., Goudonnet J.P. Imaging of surface-plasmon propagation and edge interaction using a photon scanning tunneling microscope // Phys. Rev. Lett. 1994. V. 72. P. 2927–2930.
23. Tao J., Huang X.G., Zhu J.H. A wavelength demultiplexing structure based on metal-dielectric-metal plasmonic nanocapillary resonators // Opt. Express. 2010. V. 18. P. 11111–11116.
24. Hu F.F., Yi H.X., Zhou Z.P. Wavelength demultiplexing structure based on arrayed plasmonic slot cavities // Opt. Lett. 2011. V. 36. P. 1500–1502.
25. Manolatou C., Khan M.J., Fan S.H., Villeneuve P.R., Haus H.A., Joannopoulos J.D. Coupling of modes analysis of resonant channel add-drop filters // Ieee. J. Quantum Elect. 1999. V. 35. P. 1322–1331.
26. Lu H., Liu X.M., Gong Y.K., Mao D., Wang L.R. Enhancement of transmission efficiency of nanoplasmonic wavelength demultiplexer based on channel drop filters and reflection nanocavities // Opt. Express. 2011. V. 19. P. 12885–12890.
27. Han Z.H., Forsberg E., He S.L. Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides // Ieee. Photonic Tech. L. 2007. V. 19. P. 91–93.
28. Dionne J.A., Weathercock L.A., Atwater H.A., Polman A. Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization // Physical Review B. 2006. V. 73. P. 035407.
29. Lin X.S., Huang X.G. Tooth-shaped plasmonic waveguide filters with nanometeric sizes // Opt. Lett. 2008. V. 33. P. 2874–2876.
30. Noual A., Akjouj A., Pennec Y., Gillet J.N., Djafari-Rouhani B. Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths // New J. Phys. 2009. V. 11. P. 103020.
31. Lan Y.C., Chang C.J., Lee P.H. Resonant tunneling effects on cavity-embedded metal film caused by surface-plasmon excitation // Opt. Lett. 2009. V. 34. P. 25–27.