DOI: 10.17586/1023-5086-2018-85-06-71-77
Fiber bragg grating monitoring for composites in out of autoclave curing process
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Yage Zhan, Changheng Feng, Ziyang Shen, Nabing Xie, Hong Liu, Feng Xiong, Shijie Wang, Zeyu Sun, Muhuo Yu Fiber bragg grating monitoring for composites in out of autoclave curing process (Волоконные брегговские решётки для мониторинга внеавтоклавного технологического процесса изготовления композитов) [на англ. яз.] // Оптический журнал. 2018. Т. 85. № 6. С. 71–77. http://doi.org/10.17586/1023-5086-2018-85-06-71-77
Yage Zhan, Changheng Feng, Ziyang Shen, Nabing Xie, Hong Liu, Feng Xiong, Shijie Wang, Zeyu Sun, Muhuo Yu Fiber bragg grating monitoring for composites in out of autoclave curing process (Волоконные брегговские решётки для мониторинга внеавтоклавного технологического процесса изготовления композитов) [in English] // Opticheskii Zhurnal. 2018. V. 85. № 6. P. 71–77. http://doi.org/10.17586/1023-5086-2018-85-06-71-77
Yage Zhan, Changheng Feng, Ziyang Shen, Nabing Xie, Hong Liu, Feng Xiong, Shijie Wang, Zeyu Sun, and Muhuo Yu, "Fiber Bragg grating monitoring for composites in the out-of-autoclave curing process," Journal of Optical Technology. 85(6), 371-376 (2018). https://doi.org/10.1364/JOT.85.000371
Temperature and strain are two of the most significant parameters in the curing process of composites. The fabrication of the strain-free temperature sensor has been completed by encapsulating fiber Bragg grating (FBG) with capillary ceramic tube. The grating string composed of a bare grating and an encapsulated grating has been embedded in the composites. The temperature and strain of the out of autoclave curing process have been monitored. In addition, the accuracy of the temperature monitoring has been proved by comparing the temperature monitoring results with common gratings, high temperature-resistant gratings and thermocouples, respectively. It is found that the high temperature-resistant gratings are more suitable for composites curing process, especially for the monitoring of out of autoclave curing process at the internal high temperature. This study provides a reference for multi-parameter monitoring by using gratings in out of autoclave curing process of composites.
sensor, grating, multi-parameter monitoring, composites, out of autoclave
Acknowledgements:The development supported by National Engineering Research Center, Shanghai Aircraft Manufacturing Co. Ltd (COMAC-SFGS-2016-33236), Nonlinear Science Institute Donghua University, and the Fundamental Research Funds for the Central Universities (Project of the State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, 17D128105).
OCIS codes: 060.3735
References:1. Hadzica R., Johna S., Herszberg I. Structural integrity analysis of embedded optical fibres in composite structures // Compos. Struct. 1999. V. 47. № 12. P. 759–765.
2. Majumder M., Gangopadhyay T.K., Chakraborty A.K., Dasgupta K., Bhattacharya D.K. Fibre Bragg gratings in structural health monitoring-present status and applications // Sensor. Actuat. A-phys. 2008. V. 147. № 9. P. 150–164.
3. Kim S.-W. Characteristics of strain transfer and the reflected spectrum of a metal-coated fiber Bragg grating sensor // Opt. Laser. Eng. 2017. V. 96. № 9. P. 83–93.
4. Tsukada T., Takeda S.-i., Minakuchi S., Iwahori Y., Takeda N. Evaluation of the influence of cooling rate on residual strain development in unidirectional carbon fibre/polyphenylenesulfide laminates using embedded fibre Bragg grating sensors // J. Compos. Mater. 2017. V. 51. № 7. P. 1849–1859.
5. Mulle M., Wafai H., Yudhanto A., Lubineau G., Yaldiz R., Schijve W., Verghese N. Process monitoring of glass reinforced polypropylene laminates using fiber Bragg gratings // Compos. Sci. Technol. 2016. V. 123. № 2. P. 143–150.
6. Jenkins R.B., Joyce P., Mechtel D. Localized temperature variations in laser-irradiated composites with embedded fiber Bragg grating sensors // Sensors-basel. 2017. V. 17. № 2. P. 251.
7. Tian H., Wang J., Ji Y.D., Ye C.S., Hu H.X. The monitoring of cure-induced residual stress by fiber Bragg grating sensors // Materials review. 2012. V. 26. № 10. P. 111–114.
8. Qin W., Wu X.H., Cao M.S. Monitoring for residual strain of resin cure during the process of RTM composites // Journal of Aeronautical Materials. 2005. V. 25. № 4. P. 50–52.
9. Parlevliet P.P., Bersee H.E.N., Beukers A. Measurement of (post-)curing strain development with fiber Bragg gratings // Polym. Test. 2010. V. 29. № 3. P. 291–301.
10. Grunenfeldera L.K., Dillsb A., Centeab T., Nutta S. Effect of prepreg format on defect control in out-of-autoclave processing // Compos. Part. A-Appl. S. 2017. V. 93. № 2. P. 88–99.
11. Centea T., Grunenfelder L.K., Nutt S.R. A review of out-of-autoclave prepregs-material properties, process phenomena, and manufacturing considerations // Compos. Part. A-Appl. S. 2015. V. 70. № 3. P. 132–154.
12. Sengupta S., Ghorai S.K., Biswas P. Design of superstructure fiber Bragg grating with efficient mode coupling for simultaneous strain and temperature measurement with low cross-sensitivity // IEEE. Sens. J. 2016. V. 16. № 11. P. 7941–7949.
13. Zhao Y., Gu Y.F., Lv R.Q., Yang Y. A small probe-type flowmeter based on the differential fiber Bragg grating measurement method // IEEE. T. Instrum. Meas. 2017. V. 66. № 3. P. 3.
14. Li T.L., Tan Y.G., Han X., Zheng K., Zhou Z.D. Diaphragm based fiber Bragg grating acceleration sensor with temperature compensation // Sensors-basel. 2017. V. 17. № 1. P. 218.