DOI: 10.17586/1023-5086-2018-85-07-11-16
УДК: 535.548.01
How the divergence of the pump beam affects the shape of the photoinduced light scattering pattern in lithium niobate crystals
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Максименко В.А., Криштоп В.В., Суриц В.В., Поваров Н.Д. Влияние расходимости пучка накачки на форму индикатрисы фотоиндуцированного рассеяния света в кристаллах ниобата лития // Оптический журнал. 2018. Т. 85. № 7. С. 11–16. http://doi.org/10.17586/1023-5086-2018-85-07-11-16
Maksimenko V.A., Krishtop V.V., Surits V.V., Povarov N.D. How the divergence of the pump beam affects the shape of the photoinduced light scattering pattern in lithium niobate crystals [in Russian] // Opticheskii Zhurnal. 2018. V. 85. № 7. P. 11–16. http://doi.org/10.17586/1023-5086-2018-85-07-11-16
V. A. Maksimenko, V. V. Krishtop, V. V. Surits, and N. D. Povarov, "How the divergence of the pump beam affects the shape of the photoinduced light scattering pattern in lithium niobate crystals," Journal of Optical Technology. 85(7), 383-387 (2018). https://doi.org/10.1364/JOT.85.000383
This paper presents the results of a study of the features of photoinduced light scattering in photorefractive lithium niobate crystals. The causes are discussed for the appearance of additional asymmetry of the scattering pattern when a beam with a nonplanar wave front is used for pumping. Results are presented from an experimental study of how laser radiation having an irregular wave front interacts with photoreactive lithium niobate crystals.
photoinduced light scattering, photorefractive effect, lithium niobate crystal, noise hologram, wave front
OCIS codes: 190.5330, 190.2640
References:1. Yu. S. Kuz’minov, The Electro-Optical and Nonlinear-Optical Lithium Niobate Crystal (Nauka, Moscow, 1987).
2. R. Magnusson and T. Gaylord, “Laser-scattering-induced holograms in LiNbO 3 ,” Appl. Opt. 13(7), 1545–1548 (1974).
3. F. Guibaly and L. Young, “Optically induced light scattering and beam distortion in iron-doped lithium niobate,” Ferroelectrics 46, 201–208 (1983).
4. V. V. Obukhovskiı˘, “The nature of photoinduced light scattering in ferroelectric crystals,” Ukr. Fizich. Zh. 34(3), 364 (1989).
5. Yu. M. Karpets and V. A. Maksimenko, “Photorefraction scattering kinetics in LiNbO 3 with different alloying additives,” Proc. SPIE 4748, 211–215 (2002).
6. M. Goulkov, S. Odoulov, Th. Woike, J. Imbrock, M. Imlau, E. Krätzig, C. Bäumer, and H. Hesse, “Holographic light scattering in photorefractive crystals with local response,” Phys. Rev. B 65(19), 195111 (2002).
7. N. V. Kukhtarev, V. B. Markov, and S. G. Odulov, “Polarization-anisotropic light-induced scattering in LiNbO 3 :Fe crystals,” Sov. Phys. Solid State 50(9), 1905–1914 (1980).
8. A. O. Pogrebnaya and A. F. Rybas’, “Evolution of a circularly polarized beam bearing an optical vortex with fractional topological charge in auniaxial crystal,” J. Opt. Technol. 83(10), 586–589 (2016) [Opt. Zh. 83(10), 7–11 (2016)].
9. G. V. Kulak, G. V. Krokh, P. I. Ropot, and O. V. Shakin, “Influence of light-induced gratings on acousto-optic interaction of Bessel light beams in uniaxial gyrotropic crystals,” J. Opt. Technol. 84(2), 146–151 (2017) [Opt. Zh. 84(2), 103–109 (2017)].
10. A. M. Glass, D. von der Linde, D. H. Auston, and T. Negran, “Excited state polarization and bulk photovoltaic effect,” J. Electron. Mater. 4(5), 915–943 (1975).
11. N. V. Sidorov, T. R. Volk, B. N. Mavrin, and V. T. Kalinnikov, Lithium Niobate: Defects, Photorefraction, Vibrational Spectrum, Polaritons (Nauka, Moscow, 2003).
12. S. A. Akhmanov and S. Yu. Nikitin, Physical Optics (Nauka i Izd. MGU, Moscow, 2004).
13. V. A. Maksimenko, A. V. Syuı˘, and Yu. M. Karpets, Photoinduced Processes in Lithium Niobate Crystals (Fizmatlit, Moscow, 2008).
14. M. P. Petrov, S. I. Stepanov, and A. V. Khomenko, Photorefractive Crystals in Coherent Optics (Nauka, St. Petersburg, 1992).