DOI: 10.17586/1023-5086-2018-85-07-27-32
УДК: 535.421
Methods for analyzing quality of diffraction gratings for linear-displacement sensors
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Шишова М.В., Одиноков С.Б., Лушников Д.С., Жердев А.Ю. Методы анализа качества дифракционных решеток для датчиков линейного перемещения // Оптический журнал. 2018. Т. 85. № 7. С. 27–32. http://doi.org/10.17586/1023-5086-2018-85-07-27-32
Shishova M.V., Odinokov S.B., Lushnikov D.S., Zherdev A.Yu. Methods for analyzing quality of diffraction gratings for linear-displacement sensors [in Russian] // Opticheskii Zhurnal. 2018. V. 85. № 7. P. 27–32. http://doi.org/10.17586/1023-5086-2018-85-07-27-32
M. V. Shishova, S. B. Odinokov, D. S. Lushnikov, and A. Y. Zherdev, "Methods for analyzing quality of diffraction gratings for linear-displacement sensors," Journal of Optical Technology. 85(7), 396-400 (2018). https://doi.org/10.1364/JOT.85.000396
The fundamental methods for analyzing the parameters of diffraction gratings (DGs) are presented. The features of the application of DGs as measurement scales in a linear-displacement sensor system are analyzed. A method and quality criteria for monitoring the parameters of real samples of measurement scales are proposed. These criteria generalize all diffraction efficiencies that affect the formation of quadrature signals in the system of an interferometric linear-displacement sensor.
diffraction grating, diffraction efficiency, measurement scale, interferometric linear-displacement sensor
Acknowledgements:The study was performed at N. É. Bauman Moscow State Technical University (MSTU) with the support of the Ministry of Education and Science of the Russian Federation within the framework of the implementation of the project part of the state task (project No. 3.2236.2017/4.6).
OCIS codes: 050.1950, 120.3940
References:1. S. B. Odinokov, G. R. Sagatelyan, and M. S. Kovalev, Calculation, Design, and Fabrication of Diffraction and Hologram Optical Elements (N. É. Bauman MSTU Publishing, Moscow, 2014).
2. A. Teimel, “Technology and applications of grating interferometers in high-precision measurement,” Precis. Eng. 14(4), 147–154 (1992).
3. V. A. Komotskiı˘, V. I. Korol’kov, and Y. M. Sokolov, “Investigation of the linear-displacement sensor based on two-phase diffraction gratings,” Avtometriya 42(6), 105–112 (2006).
4. Y. Jourlin, J. Jay, and O. Parriaux, “Compact diffractive interferometric displacement sensor in reflection,” Precis. Eng. 26(1), 1–6 (2002).
5. A. S. Shcheulin, A. E. Agnevaks, A. K. Kupchikov, E. B. Verhovskiı˘, and A. I. Rysin, “Application of a three-dimensional holographic grating in a CaF 2 crystal to measure linear-displacement with nanometer accuracy,” Opt. Spektrosk. 17(6), 1005–1011 (2014).
6. V. A. Afanas’ev, Optical Measurements (Vysshaya Shkola, Moscow, 1981), p. 229.
7. A. G. Poleshchuk, V. P. Korol’kov, R. K. Nasyrov, V. N. Khomutov, and A. S. Konchenko, “Methods for monitoring optical elements with microrelief,” in Collection of Works of the 2nd International Conference and the Youth School “Information Technologies and Nanotechnologies” (Samara State Aerospace University, Samara, 2016), pp. 8–14.
8. A. G. Poleshchuk, V. P. Korol’kov, R. K. Nasyrov, V. N. Khomutov, and A. S. Konchenko, “Methods for monitoring of characteristics of diffractive and conformal optical elements during the manufacturing process,” Comput. Opt. 40(6), 818–829 (2016).
9. A. G. Poleshchuk, V. N. Khomutov, A. E. Matochkin, R. K. Nasyrov, and V. V. Cherkashin, “Laser interferometers for monitoring the shape of optical surfaces,” Photonics 4, 38–51 (2016).
10. D. A. Belousov, A. G. Poleshchuk, and V. N. Khomutov, “Monitoring of the spatial distribution of optical radiation scattered by the diffractive structure,” Comput. Opt. 39(5), 678–686 (2015).
11. B. G. Turukhano, N. Turukhano, and E. A. Vilkov, “Synthesis of the aperture of the interference field,” Comput. Opt. 35(2), 145–150 (2011).
12. V. V. Korotaev, A. V. Prokof’ev, and A. N. Timofeev, Optoelectronic Converters of Linear and Angular Displacements. Part 1. Optoelectronic Converters of Linear Displacements (NIU ITMO, Saint Petersburg, 2012).
13. M. V. Shishova, S. B. Odinokov, D. S. Lushnikov, A. Y. Zherdev, and O. A. Gurylev, “Mathematical modeling of signal transfer process into linear-displacement encoder optical system,” Procedia Eng. 201, 623–629 (2017).