ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2018-85-07-03-10

УДК: 535.343.32

Determining the size dependence in the absorption spectra of rutile nanoparticles

For Russian citation (Opticheskii Zhurnal):

Попова Е.В., Латышев А.Н., Овчинников О.В. Определение размерной зависимости в спектрах поглощения наночастиц рутила // Оптический журнал. 2018. Т. 85. № 7. С. 3–10. http://doi.org/10.17586/1023-5086-2018-85-07-03-10

 

Popova E.V., Latyshev A.N., Ovchinnikov O.V. Determining the size dependence in the absorption spectra of rutile nanoparticles [in Russian] // Opticheskii Zhurnal. 2018. V. 85. № 7. P. 3–10. http://doi.org/10.17586/1023-5086-2018-85-07-03-10

For citation (Journal of Optical Technology):

E. V. Popova, A. N. Latyshev, and O. V. Ovchinnikov, "Determining the size dependence in the absorption spectra of rutile nanoparticles," Journal of Optical Technology. 85(7), 377-382 (2018). https://doi.org/10.1364/JOT.85.000377

Abstract:

This paper discusses the optical absorption spectra of ensembles of titanium dioxide nanocrystals of size 2.0–3.5 nm, obtained by mechanically crushing microcrystalline rutile powder, followed by fractionation of an aqueous suspension of the material and stabilization of the lightest selected fractions in a gelatin matrix. It is established from an analysis of the electron-diffraction patterns that ensembles of rutile nanocrystals are formed. A size effect is found in the spectra of the absorption-efficiency factor of rutile nanocrystals with mean diameters 3.5–2.0 nm, the value of which was 0.2–0.5 eV, respectively.

Keywords:

optical absorption spectra, titanium dioxide, rutile, size effect, fractionation, electron diffraction

OCIS codes: 300.1030, 160.4236, 160.4760, 160.6000

References:

1. U. Diebold, “The surface science of titanium dioxide,” Surf. Sci. Rep. 48(5–8), 53–229 (2003).
2. T. Zhu and S.-P. Gao, “The stability, electronic structure, and optical property of TiO 2 polymorphs,” J. Phys. Chem. C 118(21), 11385–11396 (2014).

3. S. M. Gupta and M. Tripathi, “A review of TiO 2 nanoparticles,” Chin. Sci. Bull. 56(16), 1639–1657 (2011).
4. M. Anpo, T. Shima, S. Kodama, and J. Kubokawa, “Photocatalytic hydrogenation of propyne with water on small-particle titania: size quantization effects and reaction intermediates,” J. Phys. Chem. 91(16), 4305–4310 (1987).
5. C. Kormann, D. W. Bahnemann, and M. R. Hoffmann, “Preparation and characterization of quantum-size titanium dioxide,” J. Phys. Chem. 92(18), 5196–5201 (1988).
6. W. Choi, A. Termin, and M. R. Hoffmann, “The role of metal-ion dopants in quantum-sized TiO 2 -correlation between photoreactivity and charge-carrier recombination dynamics,” J. Phys. Chem. 98(51), 13669–13679 (1994).
7. L. Kavan, T. Stoto, M. Graetzel, D. Fitzmaurice, and V. Shklover, “Quantum size effects in nanocrystalline semiconducting TiO 2 layers prepared by anodic oxidative hydrolysis of TiCl 3 ,” J. Phys. Chem. 97(37), 9493–9498 (1993).
8. E. Joselevich and I. Willner, “Photosensitization of quantum-size TiO 2 particles in water-in-oil microemulsions,” J. Phys. Chem. 98(31), 7628–7635 (1994).
9. N. Serpone, D. Lawless, and R. Khairutdinov, “Size effects on the photophysical properties of colloidal anatase TiO 2 particles: size quantization versus direct transitions in this indirect semiconductor?” J. Phys. Chem. 99(45), 16646–16654 (1995).
10. S. Monticone, R. Tufeu, A. V. Kanaev, E. Scola, and C. Sanchez, “Quantum size effect in TiO 2 nanoparticles: does it exist?” Appl. Surf. Sci. 162, 565–570 (2000).
11. N. Satoh, T. Nakashima, K. Kamikura, and K. Yamamoto, “Quantum size effect in TiO 2 nanoparticles prepared by finely controlled metal assembly on dendrimer templates,” Nature Nanotechnol. 3(2), 106–111 (2008).
12. V. Kaler, R. K. Duchaniya, and U. Pandel, “Synthesis of nano-titanium dioxide by sol–gel route,” AIP Conf. Proc. 1724(1), 020127 (2016).
13. X. Chen and S. S. Mao, “Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications,” Chem. Rev. 107(7), 2891–2959 (2007).
14. L. Chiodo, M. Salazar, A. H. Romero, S. Laricchia, F. D. Sala, and A. Rubio, “Structure, electronic, and optical properties of TiO 2 atomic clusters: an ab initio study,” J. Chem. Phys. 135(24), 244704 (2011).
15. S. Auvinen, M. Alatalo, H. Haario, J. P. Jalava, and R. J. Lamminmäki, “Size and shape dependence of the electronic and spectral properties in TiO 2 nanoparticles,” J. Phys. Chem. C 115(17), 8484–8493 (2011).
16. D. Cho, D. C. Ko, O. Lamiel-Garcia, S. T. Bromley, J. Y. Lee, and F. Illas, “Effect of size and structure on the ground-state and excited-state electronic structure of TiO 2 nanoparticles,” J. Chem. Theory Comput. 12(8), 3751–3763 (2016).
17. M. Gały ´nska and P. Persson, “Quantum chemical calculations of the structural influence on electronic properties in TiO 2 nanocrystals,” Mol. Phys. 115(17–18), 2209–2217 (2017).
18. M. A. Henderson, “A surface-science perspective on photocatalysis,” Surf. Sci. Rep. 66(6), 185–297 (2011).
19. N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials, vol. 1 (Oxford Univ. Press, 1971; Mir, Moscow, 1982).
20. S. Indris, R. Amade, P. Heitjans, M. Finger, A. Haeger, D. Hesse, and K. D. Becker, “Preparation by high-energy milling, characterization, and catalytic properties of nanocrystalline TiO 2 ,” J. Phys. Chem. B 109(49), 23274–23278 (2005).
21. J. O. Carneiro, S. Azevedo, F. Fernandes, E. Freitas, M. Pereira, C. J. Tavares, S. Lanceros-Méndez, and V. Teixeira, “Synthesis of iron-doped TiO 2 nanoparticles by ball-milling process: the influence of process parameters on the structural, optical, magnetic, and photocatalytic properties,” J. Mater. Sci. 49(21), 7476–7488 (2014).
22. I. Kh. Akopyan, T. I. Ivanova, M. É. Labzovskaya, B. V. Novikov, and A. Érdni-Goryaev, “Manifestation of metastable cubic modifications in finely dispersed A2 B 6 compounds,” Tech. Phys. Lett. 36(3), 240–243 (2010) [Pis’ma Zh. Tekh. Fiz. 36(5), 94–102 (2010)].
23. C. F. Bohren and D. E. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983; Mir, Moscow, 1986).
24. J. Pascual, J. Camassel, and H. Mathieu, “Fine structure in the intrinsic absorption edge of TiO 2 ,” Phys. Rev. B 18(10), 5606–5614 (1978).
25. K. M. Glassford and J. R. Chelikowsky, “Structural and electronic properties of titanium dioxide,” Phys. Rev. B 46(3), 1284–1298 (1992).
26. C. Persson and A. Ferreira da Silva, “Strong polaronic effects on rutile TiO 2 electronic band edges,” Appl. Phys. Lett. 86(23), 231912 (2005).
27. V. M. Ievlev, C. B. Kushchev, A. N. Latyshev, L. Yu. Leonova, O. V. Ovchinnikov, M. S. Smirnov, E. V. Popova, A. V. Kostyuchenko, and S. A. Soldatenko, “Absorption spectra of TiO 2 thin films synthesized by the reactive radio-frequency magnetron sputtering of titanium,” Semiconductors 48(7), 848–858 (2014) [Fiz. Tekh. Poluprovodn. 48(7), 875–884 (2014)].
28. T. H. James, ed., The Theory of the Photographic Process (Macmillan, New York, 1977; Khimiya, Leningrad, 1980).
29. M. Santos-Beltran, F. Paraguay-Delgado, A. Santos-Beltran, and L. Fuentes, “Getting nanometric MoO 3 through chemical synthesis and high-energy milling,” J. Alloys Compd. 648, 445–455 (2015).
30. A. M. Prokhorov, Physics Encyclopedia, vol. 3 (Nauchn. Izd., Moscow, 1992).
31. G. Shimmel’, Electron Microscopy Technique (Mir, Moscow, 1972).
32. M. Salari, M. Rezaee, S. M. Mousavi Koie, P. Marashi, and H. Aboutalebi, “Effect of milling time on mechanochemical synthesis of TiO 2 nanoparticles,” Int. J. Mod. Phys. B 22(18–19), 2955–2961 (2008).
33. Y. Kayanuma, “Quantum-size effects of interacting electrons and holes in semiconductor microcrystals with spherical shape,” Phys. Rev. B 38(14), 9797–9805 (1988).