DOI: 10.17586/1023-5086-2018-85-07-44-49
УДК: 535.5
Simulation of the sensitivity of a fiber-optic magneto-optical electric current sensor with a strictly nonuniform distribution of the magnetic field around the loop
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Ловчий И.Л. Моделирование чувствительности волоконного магнитооптического датчика тока при сугубо неоднородном распределении магнитного поля вдоль контура // Оптический журнал. 2018. Т. 85. № 7. С. 44–49. http://doi.org/10.17586/1023-5086-2018-85-07-44-49
Lovchiy I.L. Simulation of the sensitivity of a fiber-optic magneto-optical electric current sensor with a strictly nonuniform distribution of the magnetic field around the loop [in Russian] // Opticheskii Zhurnal. 2018. V. 85. № 7. P. 44–49. http://doi.org/10.17586/1023-5086-2018-85-07-44-49
I. L. Lovchy, "Simulation of the sensitivity of a fiber-optic magneto-optical electric current sensor with a strictly nonuniform distribution of the magnetic field around the loop," Journal of Optical Technology. 85(7), 410-415 (2018). https://doi.org/10.1364/JOT.85.000410
Using an asymmetric arrangement of current-carrying conductors with respect to the fiber measurement loop of a magneto-optical electric current sensor, the effect of magnetic field nonuniformity on the accuracy of the sensor characteristics is estimated.
fiber-optic electric current sensor, spun type optical fiber, polarization state, Faraday effect, Poincaré sphere
OCIS codes: 060.0060, 060.2370
References:1. R. M. Silva, H. Martins, I. Nascimento, J. M. Baptista, A. L. Ribeiro, J. L. Santos, P. Jorge, and O. Frazao, “Optical current sensors for high power systems: a review,” Appl. Sci. 2(3), 602–628 (2012).
2. S. Cheng, Z. Guo, G. Zhang, W. Yu, and Y. Shen, “Distributed parameter model characterizing magnetic crosstalk in a fiber optic current sensor,” Appl. Opt. 54(34), 10009–10017 (2015).
3. Y. O. Barmenkov and F. M. Santoyo, “Faraday plasma current sensor with compensation for reciprocal birefringence induced by mechanical perturbations,” J. Appl. Res. Technol. 1(2), 157–163 (2003).
4. R. I. Laming and D. N. Payne, “Electric current sensor employing spun highly birefringent optical fibers,” J. Lightwave Technol. 7(12), 2084–2094 (1989).
5. V. P. Gubin, V. A. Isaev, S. K. Morshnev, A. I. Sazonov, N. I. Starostin, Yu. K. Chamorovskiĭ, and A. I. Usov, “The use of spun type optical fibers in current sensors,” Quantum Electron. 36(3), 287–291 (2006).
6. I. L. Lovchiĭ, “Numerical modeling and investigation of a polarimetric current transducer with a spun-type lightguide,” J. Opt. Technol. 77(12), 755–761 (2010) [Opt. Zh. 77(12), 25–33 (2010)].