DOI: 10.17586/1023-5086-2018-85-07-50-53
УДК: 681.78 535.15
Optimization of the operating spectral band of optoelectronic devices for detecting point objects against the background of outer space
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Поспелов Г.В., Савин С.В. Оптимизация рабочего спектрального диапазона оптико-электронных средств, обнаруживающих точечные объекты на фоне космоса // Оптический журнал. 2018. Т. 85. № 7. С. 50–53. http://doi.org/10.17586/1023-5086-2018-85-07-50-53
Pospelov G.V., Savin S.V. Optimization of the operating spectral band of optoelectronic devices for detecting point objects against the background of outer space [in Russian] // Opticheskii Zhurnal. 2018. V. 85. № 7. P. 50–53. http://doi.org/10.17586/1023-5086-2018-85-07-50-53
G. V. Pospelov and S. V. Savin, "Optimization of the operating spectral band of optoelectronic devices for detecting point objects against the background of outer space," Journal of Optical Technology. 85(7), 416-418 (2018). https://doi.org/10.1364/JOT.85.000416
An engineering technique has been developed to optimize the long-wavelength cutoff of the operating spectral band of mirror optoelectronic devices designed to detect point objects against the background of outer space. The proposed technique makes it possible to choose the optimal operating spectral band to minimize the mass and dimensions of the desired optical system. The negative influence caused by increasing the number of mirror optical components on the operating range of the optoelectronic device is shown.
infrared range, optical system radiation, background fluctuations restriction mode, space object
OCIS codes: 040.3060, 220.4830, 350.6090
References:1. R. D. Hudson, Infrared System Engineering (Wiley-Interscience, New York, 1969; Mir, Moscow, 1972).
2. B. N. Formozov, Visible and Infrared Photodetectors for Aerospace Applications (SPBGUAP, St. Petersburg, 2002).
3. L. A. Novitskiĭ and B. M. Stepanov, Optical Properties of Materials at Low Temperatures (Mashinostroenie, Moscow, 1980).
4. A. V. Pravdivtsev and M. N. Akram, “Simulation and assessment of stray light effects in infrared cameras using non-sequential ray tracing,” Infrared Phys. Technol. 60, 306–311 (2013).
5. V. G. Ivanov and A. A. Kamenev, Application of Wide-Format Infrared Photodetector Arrays in Optoelectronic Devices for Space Monitoring (A. F. Mozhaĭskiĭ Military Space Academy, St. Petersburg, 2015).
6. T. M. Valente, “Scaling laws for lightweight optics,” Proc. SPIE 1340, 47–66 (1990).