ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2018-85-07-61-68

Iterative optimization of the interferometric array configuration

For Russian citation (Opticheskii Zhurnal):

Siyu Huang, Youming Guo, Changhui Rao Iterative optimization of the interferometric array configuration (Итеративная оптимизация конфигурации интерферометрической решетки) [на англ. яз.] // Оптический журнал. 2018. Т. 85. № 7. С. 61–68. http://doi.org/10.17586/1023-5086-2018-85-07-61-68

 

Siyu Huang, Youming Guo, Changhui Rao Iterative optimization of the interferometric array configuration (Итеративная оптимизация конфигурации интерферометрической решетки) [in English] // Opticheskii Zhurnal. 2018. V. 85. № 7. P. 61–68. http://doi.org/10.17586/1023-5086-2018-85-07-61-68

For citation (Journal of Optical Technology):

Siyu Huang, Youming Guo, and Changhui Rao, "Iterative optimization of the interferometric array configuration," Journal of Optical Technology. 85(7), 425-431 (2018). https://doi.org/10.1364/JOT.85.000425

Abstract:

Interferometric array configuration can affect the quality of restored image. In this paper, an iterative array configuration optimization method is proposed. This method uses simple prior information of the observed target, an image reconstruction algorithm and a Monte-Carlo search method to find an optimal array configuration. The advantage of this method is that it can directly use image quality as the evaluation criterion to optimize array configuration. The optimized Y-shaped arrays with a given aperture number and the restored images are shown in the simulation and the experiment. Results show that the optimized arrays obtained images close to the ideal optimized results.

Keywords:

interferometric array configuration, iterative optimization, image reconstruction, interferometric imaging

Acknowledgements:

This work has been supported by the Hi-tech project of China.

OCIS codes: 040.1240, 110.3010, 110.3175

References:

1. Cornwell T.J. A novel principle for optimization of the instantaneous Fourier plane coverage of correlation arrays // IEEE Trans. Antenn. Propag. 1988. V. 36. № 8. Р. 1165–1167.
2. Keto E. The shapes of cross-correlation interferometers // Astrophysical J. 1997. V. 475. P. 843–852.

3. Boone F. Interferometric array design: Optimizing the locations of the antenna pads // Astron. Astrophys. 2001. V. 377. P. 368–376.
4. de Villiers M. Interferomrtric array layout design by tomographic projection // Astron. Astrophys. 2007. V. 469. P. 793–797.
5. Woody D. Radio interferometer array point spread functions II. Evaluation and optimization // ALMA memo 390. August 2001.
6. Gerchberg R.W. Super-resolution through error energy reduction // Optica Acta: Internat. J. Opt. 1974. V. 21. № 9. Р. 709–720.
7. Jiang Chu, Qiang Chen, Xi-Chen Yang. Review on full reference image quality assessment algorithms // Appl. Research Computers. 2014. V. 31. № 1. Р. 13–22.
8. He Yuntao, Jiang Yuesong, Liu Li, and Wang Changwei. Passive interferometric array optimization based on redundant spacing calibration // Opt. Exp. 2009. V. 17. № 24. Р. 598–607.
9. Wizinowich P., Acton D.S., Shelton C., Stomski P., Gathright J., Ho K., Lupton W., and Tsubota K. First light adaptive optics images from the Keck II telescope: A new era of high angular resolution imagery // Astronomical Soc. Pacific. 2000. V. 112(769). Р. 315–319.