ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2018-85-08-46-53

УДК: 612.84

The neural networks that provide stereoscopic vision

For Russian citation (Opticheskii Zhurnal):

Алексеенко С.В. Нейронные сети, обеспечивающие стереоскопическое зрение // Оптический журнал. 2018. Т. 85. № 8. С. 46–53. http://doi.org/10.17586/1023-5086-2018-85-08-46-53

 

Alekseenko S.V. The neural networks that provide stereoscopic vision [in Russian] // Opticheskii Zhurnal. 2018. V. 85. № 8. P. 46–53. http://doi.org/10.17586/1023-5086-2018-85-08-46-53

For citation (Journal of Optical Technology):

S. V. Alekseenko, "The neural networks that provide stereoscopic vision," Journal of Optical Technology. 85(8), 482-487 (2018). https://doi.org/10.1364/JOT.85.000482

Abstract:

Stereoscopic vision is the capability of perceiving the three-dimensional shape of objects and of determining their distance and relative position in space, based on the differences (disparities) of the images of an object on the two retinas. The goal of this paper was to consider how the neural networks that analyze the disparity in the primary visual cortex are organized. Information is presented that is evidence of the optimal nature of the organization of the visual system for forming neural structures that produce convergence of the inputs of the different eyes. A map of the placement of monocular projections in the primary visual cortex is constructed for binocularly visible objects of space, on the basis of which binocular neurons that are selective for disparity are first formed. An analysis of the map shows that the binocular neurons formed by simple convergence of monocular cells can provide adjustment to the positional depth relative to the bifixation point—i.e., they can encode the absolute disparity—and this agrees with the available results of neurophysiological studies. Experimental data are given that show that the problem of the correspondence of the two images of the object is not solved in the primary visual cortex. The signals of the binocular neurons of this field in this case are used to control the vergent movements of the eyes.

Keywords:

field V1, map of space projection, binocular neurons, absolute disparity, vergence eye movement

Acknowledgements:

The research was supported by the Program of Fundamental Scientific Research of State Academies in 2013–2020 (GP-14, section 63).

OCIS codes: 100.0100, 330.1400, 330.2210

References:

1. S. V. Murav’eva, O. A. Vakhrameeva, S. V. Pronin, and Yu. E. Shelepin, “Comparing monocular and binocular visual acuity under noisy conditions,” J. Opt. Technol. 82(10), 663–666 (2015) [Opt. Zh. 82(10), 23–28 (2015)].
2. C. Wheatstone, “On some remarkable, and hitherto unobserved, phenomena of binocular vision,” Philos. Trans. R. Soc. London 128, 371–394 (1838).
3. D. H. Hubel and T. N. Wiesel, Brain and Visual Perception (Oxford University Press, New York, 2005).
4. I. P. Howard, Perceiving in Depth, Volume 1: Basic Mechanisms (Oxford University Press, Oxford, 2012).
5. A. H. Bunt, D. S. Minckler, and G. W. Johanson, “Demonstration of bilateral projection of the central retina of the monkey with horseradish peroxidase neuronography,” J. Comp. Neurol. 171, 619–630 (1977).
6. R. Fendrich, C. M. Wessinger, and M. S. Gazzaniga, “Nasotemporal overlap at the retinal vertical meridian: investigations with a callosotomy patient,” Neuropsychologia 34(7), 637–646 (1996).
7. Y. Fukuda, H. Sawai, M. Watanabe, K. Wakakuwa, and K. Morigiwa, “Nasotemporal overlap of crossed and uncrossed retinal ganglion cell projections in the Japanese monkey (Macaca fuscata),” J. Neurosci. 9, 2353–2373 (1989).
8. A. G. Leventhal, S. J. Ault, and D. J. Vitek, “The nasotemporal division in primate retina: the neural bases of macular sparing and splitting,” Science 240, 66–67 (1988).
9. C. A. Marzi, F. Mancini, I. Sperandio, and S. Savazzi, “Evidence of midline retinal nasotemporal overlap in healthy humans: a model for foveal sparing in hemianopia?” Neuropsychologia 47(13), 3007–3011 (2009).
10. J. Reinhard and S. Trauzettel-Klosinski, “Nasotemporal overlap of retinal ganglion cells in humans: a functional study,” Invest. Ophthalmol. Visual Sci. 44, 1568–1572 (2003).
11. J. Stone, J. Leicester, and S. M. Sherman, “The naso-temporal division of the monkey’s retina,” J. Comp. Neurol. 150, 333–348 (1973).
12. S. V. Alekseenko, S. N. Toporova, and F. N. Makarov, “Neural connections that unite visual half-fields,” Sens. Sist. 16(2), 83–88 (2002).
13. C. J. Shatz and M. P. Stryker, “Ocular dominance in layer IV of the cat’s visual cortex and the effects of monocular deprivation,” J. Physiol. 281, 267–283 (1978).
14. D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex,” J. Physiol. 160, 106–154 (1962).
15. F. Lepore and J. P. Guillemot, “Visual receptive field properties of cells innervated through the corpus callosum in the cat,” Exp. Brain Res. 46(3), 413–424 (1982).
16. F. Lepore, A. Samson, M.-C. Paradis, M. Ptito, and J.-P. Guillemot, “Binocular interaction and disparity coding at the 17–18 border: contribution of the corpus callosum,” Exp. Brain Res. 90, 129–140 (1992).
17. K. A. Martin and D. Whitteridge, “Form, function, and intracortical projections of spiny neurones in the striate visual cortex,” J. Physiol. 353, 463–504 (1984).
18. C. D. Gilbert and T. N. Wiesel, “Columnar specificity of intrinsic horizontal and corticocortical connections in cat visual cortex,” J. Neurosci. 9(7), 2432–2442 (1989).
19. Y. Amir, M. Harel, and R. Malach, “Cortical hierarchy reflected in the organization of intrinsic connections in macaque monkey visual cortex,” J. Comp. Neurol. 334, 19–46 (1993).
20. T. Yoshioka, G. G. Blasdel, J. B. Levitt, and J. S. Lund, “Relation between patterns of intrinsic lateral connectivity, ocular dominance, and cytochrome oxidase-reactive regions in macaque monkey striate cortex,” Cereb. Cortex 6(2), 297–310 (1996).
21. P. Yu. Shkorbatova, S. N. Toporova, F. N. Makarov, and S. V. Alekseenko, “Intracellular connections of the dominant-eye columns of fields 17 and 18 accompanying experimental strabismus in cats,” Sens. Sist. 20(4), 309–318 (2006).
22. G. M. Innocenti, “General organization of callosal connections in the cerebral cortex,” in Cerebral Cortex, E. G. Jones and A. Peters, eds. (Plenum, New York, 1986), vol. 5, pp. 291–351.
23. H. B. Barlow, C. Blakemore, and J. D. Pettigrew, “The neural mechanisms of binocular depth discrimination,” J. Physiol. 193, 327–342 (1967).
24. R. Von der Heydt, Cs. von der Adorjani, P. Hanny, and G. Baumgartner, “Disparity sensitivity and receptive field incongruity of units in the cat striate cortex,” Exp. Brain Res. 31(4), 523–545 (1978).
25. T. Nikara, P. O. Bishop, and J. D. Pettigrew, “Analysis of retinal correspondence by studying receptive fields of binocular single units in cat striate cortex,” Exp. Brain Res. 6(3), 353–372 (1968).
26. P. O. Bishop and G. H. Henry, “Spatial vision,” Annu. Rev. Psychol. 22, 119–160 (1971).
27. R. D. Freeman and I. Ohzawa, “On the neurophysiological organization of binocular vision,” Vision Res. 30, 1661–1676 (1990).
28. G. C. DeAngelis, I. Ohzawa, and R. D. Freeman, “Depth is encoded in the visual cortex by a specialized receptive field structure,” Nature 352(6331), 156–159 (1991).

29. G. F. Poggio, “Mechanisms of stereopsis in monkey visual cortex,” Cereb. Cortex 5(3), 193–204 (1995).
30. A. Anzai, I. Ohzawa, and R. D. Freeman, “Neural mechanisms for processing binocular information. II. Complex cells,” J. Neurophysiol. 82, 909–924 (1999).
31. S. J. Prince, B. G. Cumming, and A. J. Parker, “Range and mechanism of encoding of horizontal disparity in macaque VI,” J. Neurophysiol. 87, 209–221 (2002).
32. B. G. Cumming and A. J. Parker, “Binocular neurons in VI of awake monkeys are selective for absolute, not relative, disparity,” J. Neurosci. 19, 5602–5618 (1999).
33. A. R. Roe, A. J. Parker, R. T. Born, and G. C. DeAngelis, “Disparity channels in early vision,” J. Neurosci. 27, 11820–11831 (2007).
34. C. J. Erkelens and H. Collewiı˘n, “Eye movements and stereopsis during dichoptic viewing of moving random-dot stereograms,” Vision Res. 25(11), 1689–1700 (1985).
35. G. S. Masson, C. Busettini, and F. A. Miles, “Vergence eye movements in response to binocular disparity without depth perception,” Nature 389, 283–286 (1997).
36. B. G. Cumming and A. J. Parker, “Responses of primary visual cortical neurons to binocular disparity without depth perception,” Nature 389, 280–283 (1997).
37. B. G. Cumming and A. J. Parker, “Local disparity not perceived depth is signaled by binocular neurons in cortical area VI of the macaque,” J. Neurosci. 20, 4758–4767 (2000).
38. F. A. Miles, “The neural processing of 3D visual information: evidence from eye movements,” Eur. J. Neurosci. 10, 811–822 (1998).
39. C. Busettini, E. J. FitzGibbon, and F. A. Miles, “Short-latency disparity vergence in humans,” J. Neurophysiol. 85, 1129–1152 (2001).
40. C. J. Erkelens, “Organisation of signals involved in binocular perception and vergence control,” Vision Res. 41, 3497–3503 (2001).
41. P. Janssen, R. Vogels, and G. A. Orban, “Macaque inferior temporal neurons are selective for disparity-defined three-dimensional shapes,” Proc. Natl. Acad. Sci. U.S.A. 96, 8217–8222 (1999).
42. P. Janssen, R. Vogels, Y. Liu, and G. A. Orban, “At least at the level of inferior temporal cortex, the stereo correspondence problem is solved,” Neuron 37, 693–701 (2003).
43. S. Tanabe, K. Umeda, and I. Fujita, “Rejection of false matches for binocular correspondence in macaque visual cortical area V4,” J. Neurosci. 24, 8170–8180 (2004).
44. G. A. Orban, P. Janssen, and R. Vogels, “Extracting 3D structure from disparity,” Trends Neurosci. 29, 466–473 (2006).
45. G. F. Poggio and B. Fischer, “Binocular interaction and depth sensitivity in the striate and prestriate cortex of the behaving monkey,” J. Neurophysiol. 40, 1392–1405 (1977).
46. L. E. Mays, “Neural control of vergence eye movements: convergence and divergence neurons in the midbrain,” J. Neurophysiol. 51, 1091–1108 (1984).
47. S. J. Judge and B. G. Cumming, “Neurons in the monkey midbrain with activity related to vergence eye movement and accommodation,” J. Neurophysiol. 55(5), 915–930 (1986).
48. M. R. Van Horn, D. M. Waitzman, and K. E. Cullen, “Vergence neurons identified in the rostral superior colliculus code smooth eye movements in 3D space,” J. Neurosci. 33, 7274–7284 (2013).
49. K. Kawamura, A. Brodal, and G. Hoddevik, “The projection of the superior colliculus onto the reticular formation of the brain stem: an experimental anatomical study in the cat,” Exp. Brain Res. 19, 1–19 (1974).
50. J. K. Harting, “Descending pathways from the superior collicullus: an autoradiographic analysis in the rhesus monkey (Macaca mulatta),” J. Comp. Neurol. 173, 583–612 (1977).
51. Y. Zhang, P. D. Gamlin, and L. E. Mays, “Antidromic identification of midbrain near response cells projecting to the oculomotor nucleus,” Exp. Brain Res. 84, 525–528 (1991).
52. B. Fischer and J. Krueger, “Disparity tuning and binocularity of single neurons in cat visual cortex,” Exp. Brain Res. 35, 1–8 (1979).
53. B. Fischer and G. F. Poggio, “Depth sensitivity of binocular cortical neurons of behaving monkeys,” Proc. R. Soc. B 204, 409–414 (1979).
54. R. Maske, S. Yamane, and P. O. Bishop, “Stereoscopic mechanisms: binocular responses of the striate cells of cats to moving light and dark bars,” Proc. R. Soc. B 229, 227–256 (1986).
55. S. Le Vay and T. Voigt, “Ocular dominance and disparity coding in cat visual cortex,” Visual Neurosci. 1, 395–414 (1988).
56. F. Gonzalez, R. Perez, M. S. Justo, and C. Ulibarrena, “Binocular interaction and sensitivity to horizontal disparity in visual cortex in the awake monkey,” Int. J. Neurosci. 107, 147–160 (2001).
57. S. V. Murav’eva, O. A. Vakhrameeva, S. V. Pronin, and Yu. E. Shelepin, “Comparing monocular and binocular visual acuity under noisy conditions,” J. Opt. Technol. 82(10), 663–666 (2015) [Opt. Zh. 82(10), 23–28 (2015)].
58. G. Vaı˘tkyavichyus, D. Matuzyavichyus, A. Shvyagzhda, V. Vilyunas, A. Radzyavichene, R. Blyumas, R. Stanikunas, and Ya. Ya. Kulikovskiı˘, “How the interocular differences in contrast of images of an object affect the perception of spatial coordinates,” Sens. Sist. 27(4), 291–305 (2013).