ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2018-85-08-77-81

УДК: 591.1

Spherical aberration of camera-like eyes

For Russian citation (Opticheskii Zhurnal):

Шепелева И.П. Сферическая аберрация камерных глаз // Оптический журнал. 2018. Т. 85. № 8. С. 77–81. http://doi.org/10.17586/1023-5086-2018-85-08-77-81

 

Shepeleva I.P. Spherical aberration of camera-like eyes [in Russian] // Opticheskii Zhurnal. 2018. V. 85. № 8. P. 77–81. http://doi.org/10.17586/1023-5086-2018-85-08-77-81

For citation (Journal of Optical Technology):

I. P. Shepeleva, "Spherical aberration of camera-like eyes," Journal of Optical Technology. 85(8), 507-510 (2018). https://doi.org/10.1364/JOT.85.000507

Abstract:

The longitudinal and transverse spherical aberrations are estimated for the reduced camera-like eyes of gastropod mollusks and humans, and by comparing the latter with the diffraction limit, its effect on the resolving power in the center of the retina is analyzed. It is shown that these two types of aberration remain unchanged in the mollusk because of the constant diameter of the pupil and it increases in the human eye with an increase in the pupil diameter. Furthermore, the longitudinal aberration is always greater than the transverse value, and the difference between them decreases with increasing pupil diameter. The magnitude of the spherical aberration is comparable to the value of the diffraction limit of resolution of the mollusk’s eye and begins to exceed the value of the diffraction limit of the resolving power of the human eye with a pupil diameter of more than 4.6 mm.

Keywords:

spherical aberration, camera-like eye, gastropods, human

Acknowledgements:

The author expresses gratitude to the senior scientific employee of the Department of Scientific Publications of ITMO University, Candidate Phys. Math. A. S. Tibilov.

The research was supported by the Program of Fundamental Scientific Research of State Academies for 2013–2020 (GP-14, section 63).

OCIS codes: 330.0330, 330.5370

References:

1. B. N. Begunov, Geometrical Optics (MGU, Moscow, 1966).
2. N. N. Michel’son, Optics of Astronomical Telescopes and Methods of Its Calculation (Fizmatlit, Moscow, 1995).
3. S. A. Rodionov, Fundamentals of Optics (SPb GITMO (TU), Saint Petersburg, 2000).
4. V. I. Cherednik and V. M. Treushnikov, “Spherical aberration and aspheric intraocular lenses,” Fundam. Issled. 8, 38–41 (2007).
5. A. M. Chernorizov, E. D. Shekhter, T. N. Grechenko, and A. V. Garusev, “Psychophysiology of achromatic vision: from simple nervous systems to man,” Psikhol. Chel. Sovrem. Mire 4, 370–377 (2009).
6. A. M. Chernorizov, E. D. Shekhter, M. M. Zimachev, and D. F. Gadel’shina, “Modular organization of mechanisms of achromatic vision: from man to simple nervous systems,” in Experimental Psychology in Russia: Traditions and Perspectives, V. A. Barabanschikova, ed. (Institute of Psychology Publishing, Russian Academy of Sciences, Moscow, 2010), pp. 884–888.
7. A. M. Chernorizov and E. N. Sokolov, “Mechanisms of achromatic vision in invertebrates and vertebrates: a comparative study,” Span. J. Psychol. 13(1), 18–29 (2010).
8. I. P. Shepeleva, “Comparative analysis of the camera-like eyes of gastropods and humans,” Sens. Sist. 27(4), 317–326 (2013).
9. I. P. Shepeleva, “Eye of the terrestrial gastropod mollusk Helicigona lapicida (Pulmonata: Stylommatophora),” Sens. Sist. 20(1), 52–58 (2006).
10. P. Artal, A. Guirao, E. Berrio, and D. R. Williams, “Compensation of corneal aberrations by the internal optics in the human eye,” J. Vis. 1, 1–8 (2001).
11. L. L. Sikoruk and M. R. Shpol’skiı˘, Amateur Astrophotography (Nauka, Moscow, 1986).
12. S. V. Kravkov, The Eye and Its Functioning (Academy of Sciences of the USSR, Moscow, Leningrad, 1950).
13. B. A. Wandell, Foundations of Vision (Sinauer Associates, Sunderlan, 1995).
14. D. D. Maksutov, Astronomical Optics (Nauka, Leningrad, 1979).
15. S. E. Kurushina and Yu. L. Ratis, “Mathematical model of the eye lens that adequately reproduces its anatomical structure and optical properties of the eye’s optical system,” Komput. Opt. 21, 81–87 (2001).
16. G. A. Lenkova, “Analytical calculation of spherical aberrations of the eye model with intraocular lenses,” Avtometriya 3, 77–88 (2000).
17. G. A. Lenkova, “Optical characteristics of intraocular lenses in air, water, and cuvette,” Avtometriya 3, 35–47 (1997).
18. P. Artal and A. Guirao, “Contributions of the cornea and the lens to the aberrations of the human eye,” Opt. Lett. 23(21), 1713–1715 (1998).
19. W. J. Donnelly and A. Roorda, “Optimal pupil size in the human eye for axial resolution,” J. Opt. Soc. Am. 20(11), 2010–2015 (2003).
20. F.-G. D. Aliev and M. I. Ismailov, “Clinical classification of aberrations of the human eye’s optical system and their role in ophthalmic surgery,” Vestn. Orenb. Gos. Univ., 177–179 (2004).
21. A. M. Godzhaeva, “Basic concepts of optical aberrations (literature review),” Ophtalmologiya 2(9), 101–104 (2012).
22. F. Schaeffel, “Processing of information in the human visual system,” in Handbook of Machine and Computer Vision: The Guide for Developers and Users, A. Homberg, ed. (Wiley-VCH Verlag GmbH&Co KGaA, Weinheim, 2017), pp. 1–29.
23. D. A. Atchison and G. Smith, Optics of the Human Eye (Butterworth-Heinemann, Oxford, 2000).