ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2018-85-09-12-16

УДК: 681.7.063

Inscription and investigation of the spectral characteristics of chirped fiber Bragg gratings

For Russian citation (Opticheskii Zhurnal):

Михнева А.А., Грибаев А.И., Варжель С.В., Фролов Е.А., Новикова В.А., Коннов К.А., Залесская Ю.К. Запись и исследование спектральных характеристик чирпированных волоконных решеток Брэгга // Оптический журнал. 2018. Т. 85. № 9. С. 12–16. http://doi.org/10.17586/1023-5086-2018-85-09-12-16

 

Mikhneva A.A., Gribaev A.I., Varzhel S.V., Frolov E.A., Novikova V.A., Konnov K.A., Zalesskaya Yu.K. Inscription and investigation of the spectral characteristics of chirped fiber Bragg gratings [in Russian] // Opticheskii Zhurnal. 2018. V. 85. № 9. P. 12–16. http://doi.org/10.17586/1023-5086-2018-85-09-12-16

For citation (Journal of Optical Technology):

A. A. Mikhneva, A. I. Gribaev, S. V. Varzhel’, E. A. Frolov, V. A. Novikova, K. A. Konnov, and Yu. K. Zalesskaya, "Inscription and investigation of the spectral characteristics of chirped fiber Bragg gratings," Journal of Optical Technology. 85(9), 531-534 (2018). https://doi.org/10.1364/JOT.85.000531

Abstract:

The results of investigations of the spectral characteristics of chirped fiber Bragg gratings induced in an optical fiber using a Talbot interferometer and a KrF excimer laser system of the master oscillator–power amplifier type with enhanced coherence are presented. Dependences of the full width of the reflection spectrum at half maximum and the reflectivity of chirped fiber Bragg gratings on their length are obtained and analyzed. Through the inscription of seven superimposed chirped fiber Bragg gratings, a diffraction structure with a spectral width of 32 nm was obtained. In addition, a chirped fiber Bragg grating whose spectral response shape is almost rectangular is presented.

Keywords:

chirped fiber Bragg grating, phase mask, KrF excimer laser system, Talbot interferometer

Acknowledgements:

The research was supported by the Ministry of Education and Science of the Russian Federation (Minobrnauka) (RFMEFI58717X0043, 14.587.21.0043).

OCIS codes: 060.3735; 060.3738; 230.1950

References:

1. S. A. Vasil’ev, O. I. Medvedkov, I. G. Korolev, A. S. Bozhkov, A. S. Kurkov, and E. M. Dianov, “Fiber gratings and their applications,” Quantum Electron. 35(12), 1085–1103 (2005) [Kvant. Elektron. 35(12), 1085–1103 (2005)].
2. M. Becker, T. Elsmann, I. Latka, M. Rothhardt, and H. Bartelt, “Chirped phase mask interferometer for fiber Bragg grating array inscription,” J. Lightwave Technol. 33(10), 2093–2098 (2015).
3. B. J. Eggleton, K. A. Ahmed, H. F. Liu, P. A. Krug, and L. Poladian, “Experimental demonstration of compression of dispersed optical pulses by reflection from self-chirped optical fiber Bragg gratings,” Opt. Lett. 19(12), 877–879 (1994).
4. F. Trepanier, G. Brochu, M. Morin, and A. Mailloux, “High-end FBG design and manufacturing for industrial lasers, sensing and telecommunications,” in Advanced Photonics (Optical Society of America, 2014), paper BM4D.1.
5. X. Wan and H. F. Taylor, “Intrinsic fiber Fabry-Perot temperature sensor with fiber Bragg grating mirrors,” Opt. Lett. 27(16), 1388–1390 (2002).
6. A. V. Tokarev, G. G. Anchutkin, S. V. Varzhel, A. I. Gribaev, A. V. Kulikov, I. K. Meshkovskiy, M. Rothhardt, T. Elsmann, M. Becker, and H. Bartelt, “UV-transparent fluoropolymer fiber coating for the inscription of chirped Bragg gratings arrays,” Opt. Laser Technol. 89, 173–178 (2017).
7. K. O. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
8. D. Z. Anderson, V. Mizrahi, T. Erdogan, and A. E. White, “Production of in-fibre gratings using a diffractive optical element,” Electron. Lett. 29(6), 566–568 (1993).
9. G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14(15), 823–825 (1989).
10. R. Kashyap, J. R. Armitage, R. Wyatt, S. T. Davey, and D. L. Williams, “All-fibre narrowband reflection gratings at 1500 nm,” Electron. Lett. 26(11), 730–732 (1990).
11. A. Othonos and X. Lee, “Narrow linewidth excimer laser for inscribing Bragg gratings in optical fibers,” Rev. Sci. Instrum. 66(5), 3112–3115 (1995).
12. Y. Lai, K. Zhou, K. Sugden, and I. Bennion, “Point-by-point inscription of sub-micrometer period fiber Bragg gratings,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (Optical Society of America, 2008), paper CTuU2.
13. M. Bernier, Y. Sheng, and R. Vallée, “Ultrabroadband fiber Bragg gratings written with a highly chirped phase mask and infrared femtosecond pulses,” Opt. Express 17(5), 3285–3290 (2009).
14. K. Sugden, I. Bennion, A. Molony, and N. J. Copner, “Chirped gratings produced in photosensitive optical fibres by fibre deformation during exposure,” Electron. Lett. 30(5), 440–442 (1994).
15. Q. Zhang, D. A. Brown, L. J. Reinhart, and T. F. Morse, “Linearly and nonlinearly chirped Bragg gratings fabricated on curved fibers,” Opt. Lett. 20(10), 1122–1124 (1995).
16. K. C. Byron, K. Sugden, T. Bricheno, and I. Bennion, “Fabrication of chirped Bragg gratings in photosensitive fibre,” Electron. Lett. 29(18), 1659–1660 (1993).
17. K. O. Hill, K. Takiguchi, F. Bilodeau, B. Malo, T. Kitagawa, S. Thériault, C. Johnson, J. Albert, and K. Takiguchi, “Chirped in-fiber Bragg gratings for compensation of optical-fiber dispersion,” Opt. Lett. 19(17), 1314–1316 (1994).
18. A. I. Gribaev, I. V. Pavlishin, A. M. Stam, R. F. Idrisov, S. V. Varzhel, and K. A. Konnov, “Laboratory setup for fiber Bragg gratings inscription based on Talbot interferometer,” Opt. Quantum Electron. 48, 540 (2016).
19. S. K. Vartapetov, A. V. Zakhryapa, V. I. Kozlovskiı˘, Yu. V. Korostelin, V. A. Mikhaı˘lov, Yu. P. Podmar’kov, I. Yu. Porofeev, D. E. Sviridov, Ya. K. Skasyrskiı˘, M. P. Frolov, and I. M. Yutkin, “Investigation of the microrelief formation on the surfaces of ZnSe and CdSe crystals under ablation by an excimer KrF laser,” Quantum Electron. 46(10), 903–910 (2016).
20. S. V. Varzhel’, A. S. Mun’ko, K. A. Konnov, A. I. Gribaev, and A. V. Kulikov, “Recording Bragg gratings in hydrogenated birefringent optical fiber with elliptical stress cladding,” J. Opt. Technol. 83(10), 638–641 (2016) [Opt. Zh. 83(10), 74–78 (2016)].
21. R. F. Idrisov, A. I. Gribaev, A. M. Stam, S. V. Varzhel’, Yu. I. Slozhenikina, and K. A. Konnov, “Inscription of superimposed fiber Bragg gratings using a Talbot interferometer,” J. Opt. Technol. 84(10), 694–697 (2017) [Opt. Zh. 84(10), 56–60 (2017)].