ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2018-85-09-17-24

УДК: 535.41

Peculiarities of the coherence time of a spectral supercontinuum generated in microstructured fibers with two zeros in the group-velocity dispersion

For Russian citation (Opticheskii Zhurnal):

Зорина В.С., Мельник М.В., Цыпкин А.Н. Расчет времени когерентности спектрального суперконтинуума, генерируемого в микроструктурированных волокнах с двумя нулевыми дисперсиями групповой скорости // Оптический журнал. 2018. Т. 85. № 9. С. 17–24. http://doi.org/10.17586/1023-5086-2018-85-09-17-24

 

Zorina V.S., Melnik M.V., Tsypkin A.N. Peculiarities of the coherence time of a spectral supercontinuum generated in microstructured fibers with two zeros in the group-velocity dispersion [in Russian] // Opticheskii Zhurnal. 2018. V. 85. № 9. P. 17–24. http://doi.org/10.17586/1023-5086-2018-85-09-17-24

For citation (Journal of Optical Technology):

V. S. Zorina, M. V. Melnik, and A. N. Tsypkin, "Peculiarities of the coherence time of a spectral supercontinuum generated in microstructured fibers with two zeros in the group-velocity dispersion," Journal of Optical Technology. 85(9), 535-540 (2018). https://doi.org/10.1364/JOT.85.000535

Abstract:

We used a numerical simulation to calculate the coherence time of the spectral supercontinuum generated in a microstructured fiber in which the group velocity dispersion as a function of wavelength and pump pulse width has two zeros. We determined the contribution to the total coherence time from each of the separate substructures in the resulting spectral supercontinuum for various models of the initial pulse parameters. We show that, near the zeros in the group-velocity dispersion, the spectral supercontinuum coherence time is observed to be a rapidly increasing function of the central wavelength of the initial pulse. This is because the primary contribution to the coherence time near the zeros in the group-velocity dispersion in such cases comes from regular structures formed during generation of the supercontinuum. At intermediate wavelengths between the zeros in the group dispersion, the contribution to the interference signal from the regular structures shifts from one substructure to another and depends on the central wavelength of the emission.

Keywords:

supercontinuum, coherence time, microstructured fibers, two zeros in the group-velocity dispersion

Acknowledgements:

This work was performed with the government financial support provided to leading Russian Federation universities (Subsidy 08-08).

OCIS codes: 030.0030, 320.2250, 060.5295

References:

1. M. Zhukova, E. Makarov, S. Putilin, A. Tsypkin, V. Chegnov, O. Chegnova, and V. Bespalov, “Experimental study of THz electro-optical sampling crystals ZnSe, ZnTe and GaP,” J. Phys. Conf. Ser. 917, 062021 (2017).
2. I. Hartl, X. Li, C. Chudoba, R. Ghanta, T. Ko, J. Fujimoto, J. Ranka, and R. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air–silica microstructure optical fiber,” Opt. Lett. 26(9), 608–610 (2001).
3. H. Takara, T. Ohara, T. Yamamoto, H. Masuda, M. Abe, H. Takahashi, and T. Morioka, “Field demonstration of over 1000-channel DWDM transmission with supercontinuum multi-carrier source,” Electron. Lett. 41(5), 270–271 (2005).
4. A. N. Tcypkin, S. E. Putilin, M. V. Melnik, E. A. Makarov, V. G. Bespalov, and S. A. Kozlov, “Generation of high-intensity spectral supercontinuum of more than two octaves in a water jet,” Appl. Opt. 55(29), 8390–8394 (2016).
5. A. A. Borimova, A. N. Tsypkin, S. É. Putilin, V. G. Bespalov, and S. A. Kozlov, “Generation of 2.5-octave spectral supercontinuum in a deuterium-oxide jet,” J. Opt. Technol. 84(6), 368–372 (2017) [Opt. Zh. 84(6), 10–15 (2017)].
6. K. A. Bzheumikhov, Z. Ch. Margushev, and Yu. V. Savoı˘skiı˘, “Optimizing the process for fabricating microstructured optical fiber,” J. Opt. Technol. 84(2), 122–129 (2017) [Opt. Zh. 84(2), 71–80 (2017)].
7. V. V. Demidov, “Single-mode microstructured lightguides with circular placement of cavities for radiation transport in the limited-nonlinearity regime,” J. Opt. Technol. 84(8), 504–508 (2017) [Opt. Zh. 84(8), 3–8 (2017)].
8. D. V. Skryabin and A. V. Gorbach, “Colloquium: Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82, 1287–1299 (2010).
9. D. Modotto, M. Andreana, K. Krupa, G. Manili, U. Minoni, A. Tonello, V. Couderc, A. Barthélémy, A. Labruyère, B. M. Shalaby, P. Leproux, S. Wabnitz, and A. B. Aceves, “Efficiency of dispersive wave generation in dual concentric core microstructured fiber,” J. Opt. Soc. Am. B 32, 1676–1685 (2015).
10. F. Biancalana, D. Skryabin, and P. St. J. Russell, “Four-wave mixing instabilities in photonic-crystal and tapered fibers,” Phys. Rev. E 68(4), 046603 (2003).
11. S. P. Stark, F. Biancalana, A. Podlipensky, and P. St. J. Russell, “Nonlinear wavelength conversion in photonic crystal fibers with three zero-dispersion points,” Phys. Rev. A 83(2), 023808 (2011).
12. Z. Song, L. Hou, X. Zhao, D. Wei, X. Liu, and Z. Liu, “Study on dual-concentric-core dispersion compensation photonic crystal fiber,” Braz. J. Phys. 39(3), 519–522 (2009).
13. J. M. Dudley and S. Coen, “Numerical simulations and coherence properties of supercontinuum generation in photonic crystal and tapered optical fibers,” IEEE J. Sel. Top. Quantum Electron. 8(3), 651–659 (2002).
14. J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27(3), 1180–1182 (2002).
15. X. Gu, M. Kimmel, A. P. Shreenath, R. Trebino, J. M. Dudley, S. Coen, and R. S. Windeler, “Experimental studies of the coherence of micro-structure-fiber supercontinuum,” Opt. Express 11(21), 2697–2703 (2003).
16. Z. Zhu and T. G. Brown, “Experimental studies of polarization properties of supercontinua generated in a birefringent photonic crystal fiber,” Opt. Express 12(5), 791–796 (2004).
17. S. M. Kobtsev, S. V. Kukarin, N. V. Fateev, and S. V. Smirnov, “Coherent, polarization and temporal properties of self-frequency shifted solitons generated in polarization-maintaining microstructured fibre,” Appl. Phys. B 81(2–3), 265–269 (2005).
18. S. M. Kobtsev and S. V. Smirnov, “Coherent properties of super-continuum containing clearly defined solitons,” Opt. Express 14(9), 3968–3980 (2006).
19. X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, A. P. Shreenath, R. Trebino, and R. S. Windeler, “Frequency-resolved optical gating and single-shot spectral measurements reveal fine structure in micro-structure-fiber continuum,” Opt. Lett. 27(13), 1174–1176 (2002).
20. I. Zeylikovich, V. Kartazaev, and R. R. Alfano, “Spectral, temporal, and coherence properties of supercontinuum generation in microstructure fiber,” J. Opt. Soc. Am. B 22(7), 1453–1460 (2005).
21. D. Türke, S. Pricking, A. Husakou, J. Teipel, J. Herrmann, and H. Giessen, “Coherence of subsequent supercontinuum pulses generated in tapered fibers in the femtosecond regime,” Opt. Express 15(5), 2732–2741 (2007).
22. G. Genty, M. Surakka, J. Turunen, and A. T. Friberg, “Second-order coherence of supercontinuum light,” Opt. Lett. 35(18), 3057–3059 (2010).
23. G. Genty, M. Surakka, J. Turunen, and A. T. Friberg, “Complete characterization of supercontinuum coherence,” J. Opt. Soc. Am. B 28(9), 2301–2309 (2011).
24. V. Semenova, A. Tsypkin, S. Putilin, and V. Bespalov, “A method for the coherence measurement of the supercontinuum source using Michelson interferometer,” J. Phys. Conf. Ser. 536, 012027 (2010).
25. R. Dutta, A. T. Friberg, G. Genty, and J. Turunen, “Two-time coherence of pulse trains and the integrated degree of temporal coherence,” J. Opt. Soc. Am. A 32(9), 1631–1637 (2015).
26. M. V. Melnik, A. N. Tcypkin, and S. A. Kozlov, “Temporal coherence of optical supercontinuum,” Rom. J. Phys. 63, 203 (2018).
27. S. A. Kozlov and V. V. Samartsev, Fundamentals of Femtosecond Optics (Cambridge International Science Publishing and Woodhead Publishing, Cambridge, 2009).
28. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2007).
29. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, 1995).