ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2018-85-09-03-11

УДК: 537.63, 539.22, 538.958

Polarizability spectra of magnetized layered nanocomposites with an anisotropic core or cladding and localized surface plasmons

For Russian citation (Opticheskii Zhurnal):

Кучеренко М.Г., Налбандян В.М. Спектры поляризуемостей замагниченных слоистых нанокомпозитов с анизотропной сердцевиной или оболочкой и локализованными поверхностными плазмонами // Оптический журнал. 2018. Т. 85. № 9. С. 3–11. http://doi.org/10.17586/1023-5086-2018-85-09-03-11

 

Kucherenko M.G., Nalbandyan V.M. Polarizability spectra of magnetized layered nanocomposites with an anisotropic core or cladding and localized surface plasmons [in Russian] // Opticheskii Zhurnal. 2018. V. 85. № 9. P. 3–11. http://doi.org/10.17586/1023-5086-2018-85-09-03-11

For citation (Journal of Optical Technology):

M. G. Kucherenko and V. M. Nalbandyan, "Polarizability spectra of magnetized layered nanocomposites with an anisotropic core or cladding and localized surface plasmons," Journal of Optical Technology. 85(9), 524-530 (2018). https://doi.org/10.1364/JOT.85.000524

Abstract:

This paper discusses the dynamic polarization properties of layered spherical and cylindrical composites with core–cladding structure, located in a constant magnetic field. The current-carrying component of the nanostructure can be either the central core or the cladding composed of a diamagnetic metal. It is shown that the presence of an external magnetic field modifies the polarizability spectra of the nanosystem, thereby altering its optical characteristics. The dipolar polarizability spectra of a composite nanocylinder with an excitonogenic cladding are constructed, as well as those of a layered spherical particle of the same structure with pronounced exciton–plasmon interaction.

Keywords:

dynamic polarizability, layered nanoparticles, cylindrical composite, polarizability spectra, magnetic field

Acknowledgements:

The research was supported by the Ministry of Education and Science of the Russian Federation (Minobrnauka) (3.7758.2017/BCh).

OCIS codes: 260.5740, 260.5430, 350.5400, 350.4238

References:

1. V. V. Klimov, Nanoplasmonics (Fizmatlit, Moscow, 2009).
2. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, Cambridge, 2006).
3. L. Novotny and N. Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
4. A. Alu and N. Engheta, “Wireless at the nanoscale: optical interconnects using matched nanoantennas,” Phys. Rev. Lett. 104, 213902 (2010).
5. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96, 113002 (2006).
6. A. Devilez, B. Stout, and N. Bonod, “Compact metallo-dielectric optical antenna for ultra directional and enhanced radiative emission,” ACS Nano 4(6), 3390–3396 (2010).
7. A. E. Krasnok, I. S. Maksimov, A. I. Denisyuk, P. A. Belov, A. E. Miroshnichenko, K. R. Simovskiı˘, and Yu. S. Kivshar, “Optical nanoantennas,” Phys.-Usp. 56(6), 539–564 (2013) [Usp. Fiz. Nauk 183, 561–589 (2013)].
8. C. Girard, “Near fields in nanostructures,” Rep. Prog. Phys. 68(8), 1883–1933 (2005).
9. D. Codruta Marinica, M. Zapata, P. Nordlander, A. K. Kazansky, P. M. Echenique, J. Aizpurua, and A. G. Borisov, “Active quantum plasmonics,” Sci. Adv. 1, e1501095 (2015).
10. K. Ehrhold, S. Christiansen, and U. Gosele, “Plasmonic properties of bimetal nanoshell cylinders and spheres,” in Excerpt from the Proceedings of the COMSOL Conference, 2008.
11. V. A. Kosobukin, “Propagation of circularly polarized waves in one-dimensional Bragg structures (magnetophotonic crystals),” Phys. Solid State 48(11), 2209–2215 (2006) [Fiz. Tverd. Tela 48(11), 2089–2094 (2006)].
12. V. A. Kosobukin and B. B. Krichevtsov, “Local-field effects in magneto-optics of two-dimensional arrays of ferromagnetic nanoparticles,” Phys. Solid State 52(4), 813–820 (2010) [Fiz. Tverd. Tela 52(4), 759–765 (2010)].
13. V. A. Kosobukin, “Magneto-optical Kerr effect in the near field of a nanowire supporting surface plasmons,” Phys. Solid State 51(2), 400–408 (2009) [Fiz. Tverd. Tela 51(2), 377–384 (2009)].
14. S. Albaladejo, R. Gómez-Medina, L. S. Froufe-Pérez, H. Marinchio, R. Carminati, J. F. Torrado, G. Armelles, A. García-Martín, and J. J. Sáenz, “Radiative corrections to the polarizability tensor of an electrically small anisotropic dielectric particle,” Opt. Express 18(4), 3556–3567 (2010).
15. D. Strickland, A. Ayón, and A. Alù, “Dynamic polarizability tensor for circular cylinders,” Phys. Rev. B 91(8), 085104 (2015).
16. A. N. Smogunov, L. I. Kurkina, and O. V. Farberovich, “Electronic structure and polarizability of quantum metallic wires,” Phys. Solid State 42(10), 1898–1907 (2000).
17. A. Alù, D. Rainwater, and A. Kerkhoff, “Plasmonic cloaking of cylinders: finite length, oblique illumination and cross-polarization coupling,” New J. Phys. 12(10), 103028 (2010).
18. G. Sapkota and U. Philipose, “Synthesis of metallic, semiconducting, and semi-metallic nanowires through control of InSb growth parameters,” Semicond. Sci. Technol. 29(3), 035001 (2014).
19. X. Wang, R. Wang, L. Shi, and J. Sun, “Synthesis of metal/bimetal nanowires and their applications as flexible transparent electrodes,” Small 11(36), 4737–4744 (2015).
20. N. P. Dasgupta, J. Sun, C. Liu, S. Brittman, S. C. Andrews, J. Lim, H. Gao, R. Yan, and P. Yang, “25th anniversary article: semiconductor nanowires synthesis, characterization, and applications,” Adv. Mater. 26, 2137–2184 (2014).
21. L. V. Podrezova, “Growth of zinc oxide nanorods obtained by hydrothermal synthesis and chemical vapor deposition,” Vestn. KazNTU 96(2), 247–256 (2013).
22. N. A. Lashkova, A. I. Maksimov, A. A. Ryabko, A. A. Bobkov, V. A. Moshnikov, and E. I. Terukov, “Synthesis of ZnO-based nanostructures for heterostructure photovoltaic cells,” Semiconductors 50(9), 1254–1260 (2016) [Fiz. Tekh. Poluprovod. 50(9), 1276–1282 (2016)].
23. L. Sun, “Structural reorganization of cylindrical nanoparticles triggered by polylactide stereocomplexation,” Nat. Commun. 5(5746), 1–21 (2014).
24. M. Müllner, F. Lunkenbein, J. Breu, M. Caruso, and A. H. E. Müller, “Template-directed synthesis of silica nanowires and nanotubes from cylindrical core-shell polymer brushes,” Chem. Mater. 24, 1802–1810 (2012).
25. E. Kallos, I. Chremmos, and V. Yannopapas, “Resonance properties of optical all-dielectric metamaterials using two-dimensional multipole expansion,” Phys. Rev. B 86, 245108 (2012).
26. É. V. Zavitaev and A. A. Yushkanov, “Absorption of electromagnetic radiation by an inhomogeneous cylindrical particle,” Tech. Phys. Lett. 30(8), 697–700 (2004) [Pis’ma Zh. Tekh. Fiz. 30(16), 74–81 (2004)].
27. M. G. Kucherenko and V. M. Nalbandyan, “Dipole polarizabilities and absorption cross sections of two-particle nanoclusters of conductive homogeneous and layered particles with the degenerate electron gas,” Russ. Phys. J. 59(9), 1425–1432 (2017).
28. M. Sukharev and A. Nitzan, “Plasmon transmission through excitonic subwavelength gaps,” J. Chem. Phys. 144(14), 144703 (2016).
29. Q. Wang, S.-F. Wu, and X.-G. Wang, “Near-field properties of a shell nanocylinder pair with gain materials,” Chin. Phys. B 21(11), 117302 (2012).
30. M. G. Kucherenko and T. M. Chmereva, “Energy transport in a cylindrical nanostructure consisting of a metallic core and a coaxial cladding with phosphor molecules,” Zh. Prikl. Spektrosk. 84(3), 358–367 (2017).
31. R. Ajith and M. Vincent, “Longitudinal localized surface plasmons in trimer nanocylinder system,” Plasmonics 11(4), 1049–1055 (2016).
32. L. Lin and Y. Zheng, “Substrate-independent lattice plasmon modes for high-performance on-chip plasmonic sensors,” Plasmonics 11(6), 1427–1435 (2016).
33. S. Fedele, M. Hakami, A. Murphy, R. Pollard, and J. Rice, “Strong coupling in molecular exciton-plasmon Au nanorod array systems,” Appl. Phys. Lett. 108(5), 053102 (2016).
34. S. Damm, S. Fedele, A. Murphy, K. Holsgrove, M. Arredondo, R. Pollard, J. N. Barry, D. P. Dowling, and J. H. Rice, “Plasmon-enhanced fluorescence studies from aligned gold nanorod arrays modified with SiO2 spacer layers,” Appl. Phys. Lett. 106(18), 183109 (2015).
35. V. L. Ginzburg and A. A. Rukhadze, Waves in a Magnetoactive Plasma (Nauka, Moscow, 1975).
36. M. G. Kucherenko and V. M. Nalbandyan, “Absorption and spontaneous emission of light by molecules near metal nanoparticles in external magnetic field,” Phys. Procedia 73, 136–142 (2015).
37. M. G. Kucherenko and V. M. Nalbandyan, “Near-field structure of a layered nanocylinder with a magnetized metallic core and an exciton-generating cladding,” in Collection of Scientific Abstracts of the Sixth International Conference on Photonics and Informational Optics, Moscow, 2017, pp. 414–415.
38. M. G. Kucherenko, D. A. Kislov, and T. M. Chmereva, “Possibilities of improving the characteristics of a scanning near-field optical microscope by plasmon-resonance amplification of the rate of radiationless energy transport,” Ross. Nanotekhnol. 7(1–2), 71–77 (2012).
39. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media, vol. 8, Theoretical Physics (Fizmatlit, Moscow, 2012; Pergamon Press, Oxford, 1960).