DOI: 10.17586/1023-5086-2018-85-09-59-61
УДК: 535.8, 621.376, 537.876.4
Reduced light transmission in an optical fiber embedded in a reinforced concrete beam under flexural loading
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Гонзалез-Тиноко Х.Э., Гузман-Ольгин Г.Х., Хотяинцев С., Лопес-Батиста М.К., Зуньига-Браво М.А. Уменьшение светопропускания оптического волокна, встроенного в железобетонную балку, при ее изгибе // Оптический журнал. 2018. Т. 85. № 9. С. 59–61. http://doi.org/10.17586/1023-5086-2018-85-09-59-61
González-Tinoco J.E., Guzmán-Olguín H.J., Khotiaintsev S., Lopez-Bautista M.C., Zuñiga-Bravo M.A. Reduced light transmission in an optical fiber embedded in a reinforced concrete beam under flexural loading [in Russian] // Opticheskii Zhurnal. 2018. V. 85. № 9. P. 59–61. http://doi.org/10.17586/1023-5086-2018-85-09-59-61
J. E. González-Tinoco, H. J. Guzmán-Olguín, S. Khotiaintsev, M. C. Lopez-Bautista, and M. A. Zuñiga-Bravo, "Reduced light transmission in an optical fiber embedded in a reinforced concrete beam under flexural loading," Journal of Optical Technology. 85(9), 570-572 (2018). https://doi.org/10.1364/JOT.85.000570
The cause for the decrease in light transmission in optical fibers embedded in reinforced concrete beams with flexural deformation was investigated. It was determined that optical fibers in such beams have multiple bends as a result of chaotic movement of gravel particles during the shrinkage of the concrete mixture. The results of field and model experiments are presented, which indicate that the probable reasons for the decrease in light transmission in optical fibers embedded in reinforced concrete beams, observed when the latter are bent, are local changes in the parameters of the optical fibers in regions with sharp bends accompanying beam deformation.
optical fibers, fiber light guides, radiation modulation, building structures, concrete
Acknowledgements:The research was supported by the National Autonomous University of Mexico (UNAM); Joint Fund of the Engineering Faculty and the Institute of Engineering UNAM (DGAPA PAPIIT IT102515, DGAPA PAPIIT IT101618, PASPA-DGAPA program).
OCIS codes: 280.4788, 060.4080,060.2370
References:1. B. Glisic, D. Inaudi, and N. Casanova, “SHM process as perceived through 350 projects,” Proc. SPIE 7648, 48–76 (2010).
2. C. K. Y. Leung, K. T. Wan, D. Inaudi, X. Bao, W. Habel, Z. Zhou, J. Ou, M. Ghandehari, H. C. Wu, and M. Imai, “Review: optical fiber sensors for civil engineering applications,” Mater. Struct. 48, 871–906 (2013).
3. S. Khotiaintsev, A. Beltrán-Hernández, and J. E. González-Tinoco, “Structural health monitoring of concrete elements with embedded arrays of optical fibers,” Proc. SPIE 8695, 869513 (2013).
4. J. E. Gonzalez-Tinoco, E. R. Gomez-Rosas, H. J. Guzman-Olguin, S. Khotiaintsev, and M. A. Zuñiga-Bravo, “Monitoring of transverse displacement of reinforced concrete beams under flexural loading with embedded arrays of optical fibers,” Proc. SPIE 9437, 94370O (2015).
5. V. N. Baikov and E. E. Sigalov, Reinforced Concrete Structures (MIR Publishers, Stroı˘izdat, Moscow, 1991).
6. D. Gloge, “Bending loss in multimode fibers with graded and ungraded core index,” Appl. Opt. 11, 2506–2513 (1972).
7. J. M. Lopez-Higuera, Handbook of Optical Fibre Sensing Technology (Wiley, 2002), pp. 211–214.