DOI: 10.17586/1023-5086-2018-85-09-74-83
УДК: 535-1
Fabrication and flatness error analysis of low-stepped mirror in static Fourier transform infrared spectrometer
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Min Zhang, Jingqiu Liang, Zhongzhu Liang, Jinguang Lv, Yuxin Qin, Weibiao Wang Fabrication and flatness error analysis of low-stepped mirror in static Fourier transform infrared spectrometer (Создание зеркал с малым шагом ступенек для инфракрасного статического фурье-спектрометра и анализ ошибок их плоскостности) [на англ. яз.] // Оптический журнал. 2018. Т. 85. № 9. С. 74–83. http://doi.org/10.17586/1023-5086-2018-85-09-74-83
Min Zhang, Jingqiu Liang, Zhongzhu Liang, Jinguang Lv, Yuxin Qin, Weibiao Wang Fabrication and flatness error analysis of low-stepped mirror in static Fourier transform infrared spectrometer (Создание зеркал с малым шагом ступенек для инфракрасного статического фурье-спектрометра и анализ ошибок их плоскостности) [in English] // Opticheskii Zhurnal. 2018. V. 85. № 9. P. 74–83. http://doi.org/10.17586/1023-5086-2018-85-09-74-83
Min Zhang, Jingqiu Liang, Zhongzhu Liang, Jinguang Lv, Yuxin Qin, and Weibiao Wang, "Fabrication and flatness error analysis of a low-stepped mirror in a static Fourier transform infrared spectrometer," Journal of Optical Technology. 85(9), 582-589 (2018). https://doi.org/10.1364/JOT.85.000582
In this study, we propose a Fourier transform infrared spectrometer based on stepped mirrors, which realize static. As the core component of the spectrometer, the low-stepped mirror’s structural parameters significantly affect the instrument performance. In order to successfully fabricate a low-stepped mirror with large area and sub-micron height, we propose a method involving multiple depositions accompanied by a 50% reduction in thickness at every iteration, which can precisely control the accuracy, consistency, and uniformity of the step height. After that, we fabricate a low-stepped mirror consisting of 32 stages and with a step height of 625 nm. Through theoretical calculation and simulation analysis, the influence of the step’s flatness error on the recovery spectrum is obtained. By increasing the substrate thickness of the stepped mirror, we can reduce the stress of the thin film. We perform experiments using the low-stepped mirror. The low-steppedmirror was incorporated into the Fourier transform infrared spectrometer, and we performed experiments to obtain the spectrum of acetonitrile liquid. The spectrogram of the acetonitrile is obtained by processing the interferogram.
spectroscopy, Fourier transform infrared spectrometer, spectrum analysis, low-stepped mirror
Acknowledgements:This study was supported by a grant from the National Natural Science Foundation of China (NSFC) under grants 61627819, 61376122, 61575193, 6173000222 and 6172780148. Funding was also received from the Jilin Province Science and Technology Development Plan under grants 20150520101JH, 20150204072GX, 20150101049JC, and 20170204077GX, as well as the Youth Innovation Promotion Association of CAS under grant 2014193.
OCIS codes: 300.6190, 300.6300, 230.4000
References:1. Yan M., Luo P.L., Iwakuni K., Millot G., Hänsch T.W., and Picqué N. Mid-infrared dual-comb spectroscopy with electro-optic modulators // Light Science & Applications. 2016. V. 6. P. e17076.
2. Wallrabe U., Solf C., Mohr J., Korvink J.G. Miniaturized Fourier transform spectrometer for the near infrared wavelength regime incorporating an electromagnetic linear actuator // Sens. Actuators A Phys. 2005. V. 123–124. P. 459–467.
3. Reyes D., Schildkraut E.R., Kim J., Connors R.F., Kotidis P., and Cavicchio D.J. A novel method of creating a surface micromachined 3D optical assembly for MEMS-based miniaturized FTIR spectrometers // Proc. SPIE. 2008. V. 6888. P. 68880D.
4. Möller K.D. Miniaturized wavefront dividing interferometers without moving parts for field and space applications // Proc. SPIE. 1993. V. 1992. P. 130–139.
5. Möller K.D. Wave-front-dividing array interferometers without moving parts for real-time spectroscopy from the IR to the UV // Appl. Opt. 1995. V. 34. № 9. P. 1493–1501.
6. Brachet F., Hébert P.J., Cansot E., Buil C., Lacan A.L., Lacan X., Courau E., Bernard F., Casteras C., Loesel J., Pierangelo C. Static Fourier transform spectroscopy breadboards for atmospheric chemistry and climate // Proc. SPIE. 2008. V. 7100. P. 710019.
7. Lacan A., Bréon F.M., Rosak A., Brachet F., Roucayrol L., Etcheto P., Casteras C., Salaün Y. A static Fourier transform spectrometer for atmospheric sounding: Concept and experimental implementation // Opt. Exp. 2010. V. 18. № 8. P. 8311–8331.
8. Ivanov E.V. Static Fourier transform spectroscopy with enhanced resolving power // J. Opt. A: Pure Appl. Opt. 2000. V. 2. № 2. P. 519–528.
9. Cansot E., Hébert P., Rosak A., Buil C., Benard F. Static infrared Fourier transform interferometer (SIFTI): Benefits of phase modulation processing // Water Science & Technology Water Supply. 2007. V. 10. № 1. P. 45.
10. Liang J.Q., Liang Z.Z., Lv J.G., Fu J.G., Zheng Y., Feng C., Wang W.B., Zhu W.B. , Yao J.S., and Zhang J. Simulation and experiment of the static FTIR based on micro multi-step mirrors // Proc. SPIE. 2011. V. 8191. P. 819104.
11. Chen C., Liang J.Q., Liang Z.Z., Lü J.G., Qin Y.X., Tian C., Wang W.B. Fabrication and analysis of tall-stepped mirror for use in static Fourier transform infrared spectrometer // Opt. Laser Technol. 2015. V. 75. P. 6–12.
12. Feng C., Liang J.Q., Liang Z.Z. Spectrum constructing with nonuniform samples using least-squares approximation by cosine polynomials // Appl. Opt. 2011. V. 50. № 34. P. 6377–6383.
13. Feng C., Wang B., Liang Z.Z., Liang J.Q. Miniaturization of step mirrors in a static Fourier transform spectrometer: Theory and simulation // JOSA B. 2011. V. 28. № 28. P 128–133.
14. Lv J.G., Liang J.Q., Liang Z.Z., Qin Y.X., Tian C., and Wang W.B. Design and manufacture of micro interference system in spatial modulation Fourier transform spectrometer // Key Engineering Materials. 2013. V. 562–565. P. 973–978.
15. Nix W.D., Clemens B.M. Crystallite coalescence: A mechanism for intrinsic tensile stresses in thin films // J. Materials Research. 1999. V. 14. № 8. P. 3467–3473.
16. Schriever C., Bohley C., Schilling J., Wehrspohn R.B. Strained silicon photonics // Materials. 2012. V. 5. № 5. P. 889–908.
17. Cha S., Lee H., Lee W., Kim H. Platinum bottom electrodes formed by electron-beam evaporation for high-dielectric thin films // Japanese J. Appl. Phys. 2014. V. 34. № 9. P. 5220–5223.
18. Ha P.C.T., Mckenzie D.R., Doyle D., Mcculloch D.G., Wuhrer R. Multilayer structure, stress reduction and annealing of carbon film // MRS Proc. 2003. V. 791. P. Q5.30.
19. Jerman M., Mergel D. Post-heating of SiO2 films for optical coatings // Thin Solid Films. 2008. V. 516. № 23. P. 8749–8751.
20. Gao J.H., Liang Z.Z., Liang J.Q., Wang W.B., Lv J.G., Qin Y.X. Spectrum reconstruction of static step-mirror based Fourier transform spectrometer // Appl. Spectr. 2017. V. 71. № 6. P. 1348.
21. https://webbook.nist.gov/cgi/cbook.cgi?ID=C75058&Units=SI&Type=IR-SPEC&Index=2#Refs