DOI: 10.17586/1023-5086-2019-86-01-21-26
УДК: 535.512
Application of electrically controlled interference for observing the autowave process in the near-electrode layer of a magnetic fluid and in an electrically tunable color filter
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Чеканов В.В., Кандаурова Н.В., Чеканов В.С., Романцев В.В. Применение электроуправляемой интерференции для наблюдения автоволнового процесса в приэлектродном слое магнитной жидкости и в электроперестраиваемом цветном фильтре // Оптический журнал. 2019. Т. 86. № 1. С. 21–26. http://doi.org/10.17586/1023-5086-2019-86-01-21-26
Chekanov V.V., Kandaurova N.V., Chekanov V.S., Romantsev V.V. Application of electrically controlled interference for observing the autowave process in the near-electrode layer of a magnetic fluid and in an electrically tunable color filter [in Russian] // Opticheskii Zhurnal. 2019. V. 86. № 1. P. 21–26. http://doi.org/10.17586/1023-5086-2019-86-01-21-26
V. V. Chekanov, N. V. Kandaurova, V. S. Chekanov, and V. V. Romantsev, "Application of electrically controlled interference for observing the autowave process in the near-electrode layer of a magnetic fluid and in an electrically tunable color filter," Journal of Optical Technology. 86(1), 16-20 (2019). https://doi.org/10.1364/JOT.86.000016
The use of electrically controlled interference—changes in the spectrum (intensity) of light reflected from a two-layer structure with variable thickness (conductive ITO coating—a layer of magnetite particles)—is described in an electric field to visualize and observe the autowave process in the near-electrode layer of a magnetic fluid. Application of electrically controlled interference in an electrically tunable color filter is demonstrated.
interference, magnetic fluid, reflection, thin film, near-electrode layer, autowaves, color filter
Acknowledgements:The study was conducted as part of a state assignment (base part) No. 3.5385.2017/8.9 for the implementation of a project on the subject “Experimental research and mathematical modeling of interphase and near-surface phenomena in a thin film of nanostructured magnetic fluid” by MIREA, a Russian technological university.
OCIS codes: 260.0260
References:1. V. V. Chekanov, N. V. Candaurova, V. S. Chekanov, and V. V. Romantsev, “Electrically controlled reflection from a thin film at a glycerin–magnetic-liquid boundary,” J. Opt. Technol. 82(1), 43–47 (2015) [Opt. Zh. 82(1), 55–60 (2015)].
2. V. V. Chekanov, N. V. Kandaurova, and V. S. Chekanov, “Multipurpose electrical interference sensors,” in Abstracts of the IVth International Scientific and Practical Conference on Current Problems of Modern Science, 2015, pp. 407–413.
3. V. V. Chekanov, N. V. Kandaurova, and V. S. Chekanov, “Phase autowaves in the near-electrode layer in the electrochemical cell with a magnetic fluid,” J. Magn. Magn. Mater. 431, 38–41 (2017).
4. N. V. Kandaurova and V. S. Chekanov, “Self-organization in the surface layer of the magnetic liquid: mechanisms of autowave appearance,” in Materials of the 35th Joint Meeting of the European Molecular Liquids Group and the Japanese Molecular Liquids Group, Vienna, 2017, p. 156.
5. A. Isomura, M. Horning, K. Agladze, and K. Yoshikawa, “Eliminating spiral waves pinned to an anatomical obstacle in cardiac myocytes by high-frequency stimuli,” Phys. Rev. E 78(6), 066216 (2008).
6. P. Bittihn, A. Squires, G. Luther, E. Bodenschatz, V. Krinsky, U. Parlitz, and S. Luther, “Phase-resolved analysis of the susceptibility of pinned spiral waves to far-field pacing in a two-dimensional model of excitable media,” Philos. Trans. R. Soc. A 368(1918), 2221–2236 (2010).
7. M. Yamazaki, H. Honjo, T. Ashihara, M. Harada, I. Sakuma, K. Nakazawa, N. Trayanova, M. Horie, J. Kalifa, J. Jalife, K. Kamiya, and I. Kodama, “Regional cooling facilitates termination of spiral-wave reentry through unpinning of rotors in rabbit hearts,” Heart Rhythm 9(1), 107–114 (2012).
8. J. Luo, B. Zhang, and M. Zhan, “Frozen state of spiral waves in excitable media,” Chaos 19(3), 033133 (2009).
9. R. J. Field and R. M. Noyes, “Oscillations in chemical systems: limit cycle behavior in a model of a real chemical reaction,” J. Chem. Phys. 60, 1877–1884 (1974).
10. A. B. Rubin, Biophysics (Nauka, Moscow, 2004).
11. R. Fitzhugh, “Mathematical models of excitation and propagation in nerve,” in Biological Engineering, H. P. Schwan, ed. (McGraw Hill, New York, 1969), pp. 1–85.
12. R. E. Rosenzweig, Ferrohydrodynamics (Mir, Moscow, 1989).
13. V. V. Chekanov, N. V. Kandaurova, and V. S. Chekanov, “Calculation of the membrane thickness of magnetite nanoparticles on the surface of the transparent conductive electrode in the electric field,” J. Nano- Electron. Phys. 7(4), 04041–04044 (2015).
14. V. V. Chekanov, N. V. Kandaurova, and V. S. Chekanov, “Thickness calculation of thin transparent conductive membrane on the border with a magnetic fluid,” J. Nano- Electron. Phys. 8(4), 04045–04048 (2016).
15. M. Born and E. Wolf, Principles of Optics (Pergamon Press, Oxford, 1970).