ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2019-86-01-27-31

УДК: 535.371, 535.621, 621.373, 544.032

Rhodamine-B absorption and fluorescence enhancement in the near field of gold nanoparticles in an acrylate-based polymer matrix

For Russian citation (Opticheskii Zhurnal):

Князев К.И., Якуненков Р.Е., Зулина Н.А., Фокина М.И., Набиуллина Р.Д. Усиление поглощения и флуоресценции родамина Б в ближнем поле золотых наночастиц в полимерной матрице на основе акрилатов // Оптический журнал. 2019. Т. 86. № 1. С. 27–31. http://doi.org/10.17586/1023-5086-2019-86-01-27-31

 

Knyazev K.I., Yakunenkov R.E., Zulina N.A., Fokina M.I., Nabiullina R.D. Rhodamine-B absorption and fluorescence enhancement in the near field of gold nanoparticles in an acrylate-based polymer matrix  [in Russian] // Opticheskii Zhurnal. 2019. V. 86. № 1. P. 27–31. http://doi.org/10.17586/1023-5086-2019-86-01-27-31

For citation (Journal of Optical Technology):

K. I. Kniazev, R. E. Yakunenkov, N. A. Zulina, M. I. Fokina, and R. D. Nabiullina, "Rhodamine-B absorption and fluorescence enhancement in the near field of gold nanoparticles in an acrylate-based polymer matrix," Journal of Optical Technology. 86(1), 21-24 (2019). https://doi.org/10.1364/JOT.86.000021

Abstract:

We describe the preparation of polymer microstructures doped with Rhodamine B organic dye and study the effect of a pinned gold-nanoparticle plasmon resonance on the optical properties of this dye in an acrylate-based polymer matrix. We find that the optical absorption and fluorescence intensity of Rhodamine B in the polymer matrix are enhanced under plasmon resonance.

Keywords:

fluorescence enhancement, fluorescence, absorption enhancement, optical absorption, plasmon resonance, gold nanoparticles, rhodamine-B, microresonator, laser ablation, colloidal solution

OCIS codes: 020.0020, 020.3690, 240.0240, 240.0310, 310.6860, 240.3990, 240.6680, 250.0250 , 250.5403, 260.0260, 260.2510, 260.5740, 110.5220, 110.6895, 140.3280, 140.3580, 140.4480, 140.4780, 160.2540, 160.4760, 160.5470, 050.0050, 050.6875, 070.5753

References:

1. M. Li, X. Zhou, Y. Ding, W. Chen, H. Yu, Q. Kan, S. Li, J. Mi, W. Wang, and J. Pan, “A directional-emission 1060-nm GaAs/InGaAs micro-cylinder laser,” IEEE Photon. Technol. Lett. 27(6), 569–572 (2015).
2. Y.-Z. Huang, S.-J. Wang, Y.-D. Yang, J.-D. Lin, K.-J. Che, J.-L. Xiao, and Y. Du, “Investigation on multiple-port microcylinder lasers based on coupled modes,” Semicond. Sci. Technol. 25(10), 105005 (2010).
3. S. Anders, W. Schrenk, E. Gornik, and G. Strasser, “Room-temperature operation of electrically pumped quantum-cascade microcylinder lasers,” Appl. Phys. Lett. 80(22), 4094–4096 (2002).
4. V. Mulloni and L. Pavesi, “Porous silicon microcavities as optical chemical sensors,” Appl. Phys. Lett. 76, 2523–2525 (2000).
5. S. V. Boriskina and L. Dal Negro, “Self-referenced photonic molecule bio(chemical)sensor,” Opt. Lett. 35, 2496 (2010).
6. E. I. Galanzha, R. Weingold, D. A. Nedosekin, M. Sarimollaoglu, J. Nolan, W. Harrington, A. S. Kuchyanov, R. G. Parkhomenko, F. Watanabe, Z. Nima, A. S. Biris, A. I. Plekhanov, M. I. Stockman, and V. P. Zharov, “Spaser as a biological probe,” Nat. Commun. 8, 15528 (2017).

7. K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
8. N. A. Toropov, A. N. Kamalieva, and T. A. Vartanyan, “Thin films of organic dyes with silver nanoparticles: enhancement and spectral shifting of fluorescence due to excitation of localised surface plasmons,” Int. J. Nanotechnol. 13, 642 (2016).
9. J. Lee and Y. Pang, “Metal-enhanced fluorescence: ultrafast energy transfer from dyes in a polymer film to metal nanoparticles,” J. Nanosci. Nanotechnol. 16, 1629–1632 (2016).
10. Q. Huang, X. Zhan, Z. Hou, Q. Chen, and H. Xu, “Polymer photonic-molecule microlaser fabricated by femtosecond laser direct writing,” Opt. Commun. 362, 73–76 (2016).
11. S. K. Vanga and A. A. Bettiol, “Proton beam writing of dye doped polymer microlasers,” Nucl. Instrum. Methods Phys. Res., Sect. B 348, 209–212 (2015).
12. D. He, W. Bao, L. Long, P. Zhang, M. Jiang, and D. Zhang, “Random lasing from dye-Ag nanoparticles in polymer films: improved lasing performance by localized surface plasmon resonance,” Opt. Laser Technol. 91, 193–196 (2017).
13. N. A. Zulina, I. M. Pavlovetc, M. A. Baranov, V. O. Kaliabin, and I. Y. Denisyuk, “Synthesis and optical properties study of nanocomposites based on AuNPs and AgNPs obtained by laser ablation in liquid monomer,” Appl. Phys. A 123(1), 39 (2017).
14. N. A. Zulina, M. A. Baranov, K. I. Kniazev, V. O. Kaliabin, I. Y. Denisyuk, S. U. Achor, and V. E. Sitnikova, “Nonlinear absorption enhancement of AuNPs based polymer nanocomposites,” Opt. Laser Technol. 103, 396–400 (2018).
15. N. A. Zulina, U. S. Achor, and K. I. Kniazev, “Polymer composition influence on optical properties of laser-generated Au nanoparticles based nanocomposites,” Semiconductors 52(5), 583–586 (2018).
16. G. Rezanejade Bardajee, Z. Hooshyar, and M. Khanjari, “Dye fluorescence quenching by newly synthesized silver nanoparticles,” J. Photochem. Photobiol. A 276, 113–121 (2014).
17. A. M. Queiroz, A. V. Mezacasa, D. E. Graciano, W. F. Falco, J.-C. M’Peko, F. E. G. Guimarães, T. Lawson, I. Colbeck, S. L. Oliveira, and A. R. L. Caires, “Quenching of chlorophyll fluorescence induced by silver nanoparticles,” Spectrochim. Acta, Part A 168, 73–77 (2016).