ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2019-86-01-03-12

УДК: 538.958, 537.632.5, 52.628, 544.225.25

Nitrogen impurities and fluorescent nitrogen-vacancy centers in detonation nanodiamonds: identification and distinct features

For Russian citation (Opticheskii Zhurnal):

Осипов В.Ю., S. Abbasi Zargaleh, F. Treussart, K. Такаi, Романов Н.М., Шахов Ф.М., Baldycheva A. Nitrogen impurities and fluorescent nitrogen-vacancy centers in detonation nanodiamonds: identification and distinct features (Примеси азота и флуоресцентные азот-вакансионные центры в детонационных наноалмазах. Идентификация и отличительные особенности) [на англ. яз.] // Оптический журнал. 2019. Т. 86. № 1. С. 3–12. http://doi.org/10.17586/1023-5086-2019-86-01-03-12

 

Осипов В.Ю., S. Abbasi Zargaleh, F. Treussart, K. Такаi, Романов Н.М., Шахов Ф.М., Baldycheva A. Nitrogen impurities and fluorescent nitrogen-vacancy centers in detonation nanodiamonds: identification and distinct features (Примеси азота и флуоресцентные азот-вакансионные центры в детонационных наноалмазах. Идентификация и отличительные особенности) [in English] // Opticheskii Zhurnal. 2019. V. 86. № 1. P. 3–12. http://doi.org/10.17586/1023-5086-2019-86-01-03-12

For citation (Journal of Optical Technology):

V. Yu. Osipov, S. Abbasi Zargaleh, F. Treussart, K. Takai, N. M. Romanov, F. M. Shakhov, and A. Baldycheva, "Nitrogen impurities and fluorescent nitrogen-vacancy centers in detonation nanodiamonds: identification and distinct features," Journal of Optical Technology. 86(1), 1-8 (2019). https://doi.org/10.1364/JOT.86.000001

Abstract:

We show that nitrogen is the main impurity contained in detonation nanodiamonds at a concentration of 16,000 ppm. The content of nitrogen-vacancy NV centers in these nanodiamonds is about 2.7 ppm, which is the largest of all known types of nanodiamonds of size less than 10 nm with artificially created NV centers. The removal of graphite-like fragments from the nanodiamond surface allowed us to detect the characteristic photoluminescence of the NV color centers in individual nanodiamond aggregates of sizes from 50–100 to 500–700 nm. We have further confirmed the detection of the negatively charged NV through the observation of a strong decrease in the photoluminescence intensity when an external magnetic field is applied. Such an effect results from the optically detectable magnetic resonance of the electronic spin triplet ground state of NV that cannot be observed in other emitting defects in a similar spectral range, including the neutral NV0 centers.

Keywords:

detonation nanodiamond, nitrogen-vacancy centers, electron paramagnetic resonance, photoluminescence quenching, magnetic field, mixing the electronic sublevels of ground triplet states

Acknowledgements:

The authors are grateful to Dr. Hans Jurgen von Bardeleben and Dr. Alexander Shames for fruitful discussions of some results of the EPR.

OCIS codes: 160.4236, 160.2540, 300.6280, 3000.6370, 240.6675, 280.1545, 350.3850

References:

1. Balasubramanian G., Chan I.Y., Kolesov R., Al-Hmoud M., Tisler J., Shin C., Kim C., Wojcik A., Hemmer P.R., Krueger A., Hanke T., Leitenstorfer A., Bratschitsch R., Jelezko F., Wrachtrup J. Nanoscale imaging magnetometry with diamond spins under ambient conditions // Nature. 2008. V. 455. P. 648–651.
2. Taylor J.M., Cappellaro P., Childress L., Jiang L., Budker D., Hemmer P.R., Yacoby A., Walsworth R., and Lukin M.D. High-sensitivity diamond magnetometer with nanoscale resolution // Nature Phys. 2008. V. 4. P. 810–816.
3. Hui Y.Y., Su L.-J., Chen O. Y., Chen Y.-T., Liu T.-M., and Chang H.-C. Wide-field imaging and flow cytometric analysis of cancer cells in blood by fluorescent nanodiamond labeling and time gating // Sci. Rep. 2014. V. 4. Р. 5574.
4. Kurtsiefer C., Mayer S., Zarda P., and Weinfurter H. Stable solid-state source of single photons // Phys. Rev. Lett. 2000. V. 85. P. 290–293.
5. Dutt M.V.G., Childress L., Jiang L., Togan E., Maze J., Jelezko F., Zibrov A.S., HemmerP.R., and Lukin M.D. Quantum register based on individual electronic and nuclear spin qubits in diamond // Science. 2007. V. 316. P. 1312–1316.
6. Doherty M.W., Manson N.B., Delaney P., Jelezko F., Wrachtrup J., and Hollenberg L.C.L. The nitrogen-vacancy colour centre in diamond // Phys. Rep. 2013. V. 528. № 1. P. 1–45.
7. Shenderova O. and McGuire G. Science and engineering of nanodiamond particle surfaces for biological applications // Biointerphases. 2015. V. 10. Р. 030802.
8. Nagarajan S., Pioche-Durieu C., Tizei L.H.G., Fang C.-Y., Bertrand J.-R., Le Cam E., Chang H.-C., Treussart F., and Kociak M. Simultaneous cathodoluminescence and electron microscopy cytometry of cellular vesicles labeled with fluorescent nanodiamonds // Nanoscale. 2016. V. 8. Р. 11588.
9. Rehor I., Slegerova J., Kucka J., Proks V., Petrakova V., Adam M.-P., Treussart F., Turner S., Bals S., Sacha P., Ledvina M., Wen A.M., Steinmetz N.F., and Cigler P. Fluorescent nanodiamonds: Fluorescent nanodiamonds embedded in biocompatible translucent shells // Small. 2014. V. 10. № 6. P. 1106–1115.
10. Smith B.R., Inglis D.W., Sandnes B., Rabeau J.R., Zvyagin A.V., Gruber D., Noble C.J., Vogel R, Osawa E., and Plakhotnik T. Five-nanometer diamond with luminescent nitrogen-vacancy defect centers // Small. 2009. V. 5. № 14. P. 1649–1653.
11. Detonation nanodiamonds: Science and applications / Ed. by Vul’ A., Shenderova O. Singapore: Pan Stanford Publishing Pte. Ltd., 2014. 346 p.
12. Su L.-J., Fang C.-Y., Chang Y.-T., Chen K.-M., Yu Y.-C., Hsu J.-H., and Chang H.-C. Creation of high density ensembles of nitrogen-vacancy centers in nitrogen-rich type Ib nanodiamonds // Nanotechnology. 2013. V. 24. Р. 315702.
13. Osipov V.Yu., Shames A.I., Enoki T., Takai K., Baidakova M.V., and Vul’ A.Ya. P aramagnetic d efects a nd e xchange coupled spins in pristine ultrananocrystalline diamonds // Diamond Relat. Mater. 2007. V. 16. № 12. P. 2035–2038.

14. Shames A.I., Osipov V.Yu., von Bardeleben H.J., Boudou J.-P., Treussart F., and Vul’ A.Ya. Native and induced triplet nitrogen-vacancy centers in nano- and microdiamonds: Half-field electron paramagnetic resonance fingerprint // Appl. Phys. Lett. 2014. V. 104. Р. 063107.
15. Osipov V.Yu., Romanov N.M., Bogdanov K.V., Treussart F., Jentgens C., and Rampersaud A. Investigation of NV(–) centers and crystallite interfaces in synthetic single-crystal and polycrystalline nanodiamonds by optical fluorescence and microwave spectroscopy // JOT. 2018. V. 85. № 2. P. 63–72.
16. Osswald S., Yushin G., Mochalin V., Kucheyev S.O., and Gogotsi Y. Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air // J. Am. Chem. Soc. 2006. V. 128. № 35. P. 11635–11642.
17. Shames A.I., Osipov V.Yu., Bogdanov K.V., Baranov A.V., Zhukovskaya M.V., Dalis A., Vagarali S.S., and Rampersaud A. Does progressive nitrogen doping intensify negatively charged nitrogen vacancy emission from e-beam-irradiated Ib type high-pressure-high temperature diamonds? // J. Phys. Chem. C. 2017. V. 121. № 9. P. 5232–5240.
18. Moulder J.F., Stickle W.F., Sobol P.E., and Bomben K.D. Handbook of X-ray photoelectron spectroscopy / Ed. by Chastain J. Minnesota: Perkin-Elmer Corporation Physical Electronics Division, 1992. 261 p.
19. Loubser J.H.N., van Wyk J.A. Electron spin resonance in the study of diamond // Rep. Prog. Phys. 1978. V. 41. P. 1201–1248.
20. Shames A.I., Osipov V.Yu., Boudou J.-P., Panich A.M., von Bardeleben H.J., Treussart F., and Vul’ A.Ya. Magnetic resonance tracking of fluorescent nanodiamond fabrication // J. Phys. D: Appl. Phys. 2015. V. 48. № 15. Р. 155302.
21. Smith W.V., Sorokin P.P., Gelles I.L., and Lasher G.J. Electron spin resonance of nitrogen donors in diamond // Phys. Rev. 1959. V. 115. № 6. P. 1546–1552.
22. Aleksenskii A.E., Osipov V.Yu., Vul’ A.Ya., Ber B.Ya., Smirnov A.B., Melekhin V.G., Adriaenssens G.J., and Iakoubovskii K. Optical properties of nanodiamond layers // Phys. Solid State. 2001. V. 43. № 1. P. 145–153.
23. Osipov V.Yu., Romanov N.M., Shakhov F.M., and Takai K. Identifying quasi-free and bound nitrate ions on the surfaces of diamond nanoparticles by IR and X-ray photoelectron spectroscopy // JOT. 2018. V. 85. № 3. P. 122–129.
24. Osswald S., Mochalin V.N., Havel M., Yushin G., and Gogotsi Y. Phonon confinement effects in the Raman spectrum of nanodiamond // Phys. Rev. B. 2009. V. 80. № 7. Р. 075419.
25. Stehlik S., Varga M., Ledinsky M., Miliaieva D., Kozak H., Skakalova V., Mangler C., Pennycook T.J., Meyer J.C., Kromka A., and Rezek B. High-yield fabrication and properties of 1.4 nm nanodiamonds with narrow size distribution // Sci. Rep. 2016. V. 6. Р. 38419.
26. Mochalin V., Osswald S., and Gogotsi Y. Contribution of functional groups to the Raman spectrum of nanodiamond powders // Chem. Mater. 2009. V. 21. № 2. P. 273–279.
27. Osipov V.Yu., Panich A.M., Baranov A.V. Comment on “Carbon structure in nanodiamonds elucidated from Raman spectroscopy” by V.I. Korepanov et al. // Carbon. 2018. V. 127. P. 193–194.
28. Epstein R.J., Mendoza F.M., Kato Y.K., and Awschalom D.D. Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond // Nat. Phys. 2005.V. 1. № 2. P. 94–98.
29. Sarkar S.K., Bumb A., Wu X., Sochacki K., Kellman P., Brechbiel M.W., and Neuman K.C. Wide-field in vivo background free imaging by selective magnetic modulation of nanodiamond fluorescence // Biomed. Opt. Exp. 2014. V. 5. № 4. P. 1190–1202.
30. Chapman R. and Plakhotnik T. Background-free imaging of luminescent nanodiamonds using external magnetic field for contrast enhancement // Opt. Lett. 2013. V. 38. № 11. P. 1847–1849.
31. Tetienne J.-P., Rondin L., Spinicelli P., Chipaux M., Debuisschert T., Roch J.-F., and Jacques V. Magnetic-field-dependent photodynamics of single NV defects in diamond: An application to qualitative all-optical magnetic imaging // New J. Physics. 2012. V. 14. Р. 103033.