DOI: 10.17586/1023-5086-2019-86-01-32-39
УДК: 535.313.6
Algorithm for sequential correction of wavefront aberrations with the criterion of focal spot size minimization
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Ягнятинский Д.А., Федосеев В.Н. Алгоритм последовательной коррекции аберраций волнового фронта по критерию минимизации размера фокального пятна // Оптический журнал. 2019. Т. 86. № 1. С. 32–39. http://doi.org/10.17586/1023-5086-2019-86-01-32-39
Yagnyatinskiy D.A., Fedoseev V.N. Algorithm for sequential correction of wavefront aberrations with the criterion of focal spot size minimization [in Russian] // Opticheskii Zhurnal. 2019. V. 86. № 1. P. 32–39. http://doi.org/10.17586/1023-5086-2019-86-01-32-39
D. A. Yagnyatinskiy and V. N. Fedoseyev, "Algorithm for sequential correction of wavefront aberrations with the criterion of focal spot size minimization," Journal of Optical Technology. 86(1), 25-31 (2019). https://doi.org/10.1364/JOT.86.000025
A new wavefront correction algorithm for adaptive optical systems that implements the sequential elimination of aberration components is proposed. The criterion by which correction is guided is the square of the focal spot radius. The operation of the algorithm has been simulated for two fundamentally different mode bases—the generalized Zernike modes and the generalized influence functions of the actuators of the deformable mirror used. The method for obtaining these bases is described. It is shown that, for a wavefront of a complex shape, the correction is more accurate in terms of influence functions, and Zernike modes are better suited for correcting aberrations of lower orders.
algorithm for sequential correction, wavefront, aberrations, focal spot, adaptive optical system, Zernike modes, generalized influence functions of the actuators, deformable mirror
OCIS codes: 220.1000, 220.1080
References:1. M. A. Vorontsov and V. I. Schmal’gauzen, Principles of Adaptive Optics (Nauka, Moscow, 1985).
2. V. A. Bogachev, S. G. Garanin, F. A. Starikov, and R. A. Shnyagin, “Computer simulation of adaptive phase correction of regular, vortex and incoherent multimode laser beams without a wavefront sensor,” Opt. Atmos. Okeana 29(11), 934–941 (2016).
3. M. A. Vorontsov and V. P. Sivokon, “Stochastic parallel-gradient-descent technique for high-resolution wave-front phase-distortion correction,” J. Opt. Soc. Am. A 15(10), 2745–2758 (1998).
4. S. S. Chesnokov and I. V. Davletshina, “Simplex method in problems of light-beam phase control,” Appl. Opt. 34(36), 8375–8381 (1995).
5. O. Lundh, “Control of laser focusing using a deformable mirror and a genetic algorithm,” Master’s Thesis, Lund Reports on Atomic Physics (2003).
6. U. Mahlab and J. Shamir, “Iterative optimization algorithms for filter generation in optical correlators: a comparison,” Appl. Opt. 31(8), 1117–1125 (1992).
7. M. J. Booth, “Adaptive optics in microscopy,” Philos. Trans. A Math. Phys. Eng. Sci. 365(1861), 2829–2843 (2007).
8. B. Wang and M. J. Booth, “Optimum deformable mirror modes for sensorless adaptive optics,” Opt. Commun. 282(23), 4467–4474 (2009).
9. D. A. Yagnyatinskiy, D. M. Lyakhov, A. N. Borshevnikov, and V. N. Fedoseyev, “The control algorithm of an adaptive optical system based on minimizing the radius of the focal spot,” Opt. Atmos. Okeana 29(11), 949–953 (2016).
10. W. Lianghua, P. Yang, Y. Kangjian, C. Shanqiu, W. Shuai, L. Wenjing, and B. Xu, “Synchronous model-based approach for wavefront sensorless adaptive optics system,” Opt. Express 25(17), 20584–20597 (2017).
11. V. N. Mahajan, Optical Imaging and Aberrations, Part III: Wavefront Analysis (SPIE Press, 2013).
12. P. I. Romanovskiı˘, Fourier Series, Field Theory, Analytical and Special Functions, Laplace Transform (Nauka, Moscow, 1973).
13. G. H. Golub and C. F. Van Loan, Matrix Computations (Johns Hopkins University Press, 1996).
14. N. A. Balonin, Yu. N. Balonin, and A. A. Vostrikov, “Calculation of Mersenne-Walsh matrices,” Vestn. Komput. Inform. Tekhnol. 11, 51–55 (2014).
15. Q. Zhou, W. Liu, and Z. Jiang, “A new method to measure low-order aberrations based on wavefront slope,” Proc. SPIE 9506, 95061B (2015).