DOI: 10.17586/1023-5086-2019-86-01-68-74
УДК: 667.7, 535.015
Electrochromic devices based on tungsten oxide layers modified with polyethylene glycol
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Сохович Е.В., Мякин С.В., Семенова А.А., Земко В.С., Бахметьев В.В., Проститенко О.В., Халимон В.И. Электрохромные устройства на основе вольфрамоксидных слоев, модифицированных полиэтиленгликолем // Оптический журнал. 2019. Т. 86. № 1. С. 68–74. http://doi.org/10.17586/1023-5086-2019-86-01-68-74
Sokhovich E.V., Myakin S.V., Semenova A.A., Zemko V.S., Bakhmetiyev V.V., Prostitenko O.V., Khalimon V.I. Electrochromic devices based on tungsten oxide layers modified with polyethylene glycol [in Russian] // Opticheskii Zhurnal. 2019. V. 86. № 1. P. 68–74. http://doi.org/10.17586/1023-5086-2019-86-01-68-74
E. V. Sokhovich, S. V. Mjakin, A. A. Semenova, V. S. Zemko, V. V. Bakhmetyev, O. V. Prostitenko, and V. I. Khalimon, "Electrochromic devices based on tungsten oxide layers modified with polyethylene glycol," Journal of Optical Technology. 86(1), 54-59 (2019). https://doi.org/10.1364/JOT.86.000054
For the synthesis of tungsten-oxide-based electrochromic layers, the effect of the addition of polyethylene glycol (PEG) in different concentrations into peroxopolytungstic acid sol followed by thermal treatment at different temperatures on the performance of electrochromic devices (ECDs) is studied. The modification of the tungsten-oxide-layer sol-gel synthesis under optimal conditions (PEG: WO3 ratio 1∶2, temperature 450°C) provides a significant improvement of the ECD optical contrast and coloration efficiency due to the formation of a highly developed surface of the tungsten oxide layer, enhancing its contact with electrolyte while retaining continuity of the electrochromic layer.
electrochromic effect, contrast, coloration, tungsten oxide, sol-gel, polyethylene glycol
OCIS codes: 000.1570, 160.2100, 160.6060
References:1. P. R. Somani and S. Radhakrishnan, “Electrochromic materials and devices: present and future,” Mater. Chem. Phys. 77, 117–133 (2002).
2. C. G. Granqvist, “Electrochromic tungsten oxide films: review of progress 1993–1998,” Sol. Energy Mater. Sol. Cells 60, 201–262 (2000).
3. C. Colombo, C. Lücking, and C. R. McInnes, “Orbit evolution, maintenance and disposal of SpaceChip swarms through electrochromic control,” Acta Astronaut. 82(1), 25–37 (2013).
4. G. Mengali and A. A. Quarta, “Heliocentric trajectory analysis of Sunpointing smart dust with electrochromic control,” Adv. Space Res. 57(4), 991–1001 (2016).
5. M. M. Sychov, N. V. Zakharova, and S. V. Mjakin, “Surface functional transformations in BaTiO 3–CaSnO 3 ceramics in the course of milling,” Ceram. Int. 39, 6821–6826 (2013).
6. S. V. Mjakin, T. S. Minakova, V. V. Bakhmetyev, and M. M. Sychev, “Effect of the surfaces of Zn 3 (PO 4 ) 2 :Mn 2+ phosphors on their luminescent properties,” Zh. Fiz. Khim. 90(1), 153–158 (2016).
7. V. V. Bakhmetyev, T. S. Minakova, S. V. Mjakin, L. A. Lebedev, A. B. Vlasenko, A. A. Nikandrova, I. A. Ekimova, N. S. Eremina, M. M. Sychov, and A. Ringuede, “Synthesis and surface characterization of nanosized Y 2 O 3 :Eu and YAG:Eu luminescent phosphors which are useful for photodynamic therapy of cancer,” Eur. J. Nanomed. 8(4), 173–184 (2016).
8. C. G. Granqvist, “Electrochromic metal oxides: an introduction to materials and devices,” in Electrochromic Materials and Devices (Wiley, 2015), pp. 3–4.
9. Y. Fang, X. Sun, and H. Cao, “Influence of PEG additive and annealing temperature on structural and electrochromic properties of sol-gel derived WO 3 films,” J. Sol-Gel Sci. Technol. 59, 145–152 (2011).
10. S.-J. Lu, C. Wang, B.-W. Zhao, H. Wang, J.-B. Liu, and H. Yan, “Electrochromic properties of PEG-modified tungsten oxide thin films,” J. Inorganic Mater. 32(2), 185–190 (2017).
11. E. V. Kolobkova, V. S. Zemko, E. V. Sokhovich, E. A. Sosnov, and A. S. Kochetkova, “Surface properties of electrochromic α-WO 3 films obtained by the sol-gel method,” Izv. SPbGTI (TU) 33, 24–29 (2016).
12. V. I. Khalimon, O. V. Prostitenko, A. Yu. Rogov, and E. S. Kabyshko, “Remote software and algorithmic system based on real-time decision-making support,” Inf. Sist. Tekhnol. 6(104), 94–102 (2017).
13. V. I. Khalimon, O. V. Prostitenko, A. Yu. Rogov, and I. I. Bushikhin, “Software package of data and analytical support system for making operational dispatch decisions in distributed systems,” Izv. SPbGTI (TU) 13(39), 99–101 (2012).
14. V. I. Khalimon, Yu. P. Yulenets, O. V. Prostitenko, and A. Yu. Rogov, “Development of distance learning systems in the organization of complex teaching and research technologies,” Izv. SPbGTI (TU) 10(36), 86–91 (2016).