DOI: 10.17586/1023-5086-2019-86-10-20-29
УДК: 535.36
Regularized parametric model of the angular distribution of the brightness factor of a rough surface
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Лабунец Л.В., Борзов А.Б., Ахметов И.М. Регуляризованная параметрическая модель индикатрисы коэффициента яркости шероховатой поверхности // Оптический журнал. 2019. Т. 86. № 10. С. 20–29. http://doi.org/10.17586/1023-5086-2019-86-10-20-29
Labunets L.V., Borzov A.B., Akhmetov I.M. Regularized parametric model of the angular distribution of the brightness factor of a rough surface [in Russian] // Opticheskii Zhurnal. 2019. V. 86. № 10. P. 20–29. http://doi.org/10.17586/1023-5086-2019-86-10-20-29
L. V. Labunets, A. B. Borzov, and I. M. Akhmetov, "Regularized parametric model of the angular distribution of the brightness factor of a rough surface," Journal of Optical Technology. 86(10), 618-626 (2019). https://doi.org/10.1364/JOT.86.000618
Based on the results of goniospectrophotometric measurements, physically based mathematical models of the spatial angular distributions of the luminous intensity and brightness factor are proposed for the coatings of structural materials. The models adequately describe the main scattering regularities of optical radiation by a rough surface in the visible and near-IR regions of electromagnetic waves and require no significant computing costs. Regularized regression dependences are obtained for the parameters of the model of the angular distribution of the luminous intensity on the cosine of the angle of incidence of the radiant flux.
mathematical modelling, indicator, brightness factor, optical radiation, rough surface, goniospectrophotometry, regularization principle
Acknowledgements:The authors are grateful to Candidate of Technical Sciences Aleksandr Dmitrievich Reshetko for many years of fruitful collaboration and inestimable help in carrying out the experimental research.
OCIS codes: 290.5825, 290.5880
References:1. L. V. Labunets, Digital Models of Target Images and Signal Implementations in Optical Lidar Systems (Izd. MGTU im. N. É. Baumana, Moscow, 2007).
2. M. M. Gurevich and M. M. Seredenko, “Spectrophotometric apparatus for measuring the characteristics of scattering materials in the 0.5–15-μm region,” Sov. J. Opt. Technol. 42(2) 86–88 (1975) [Opt. Mekh. Promst. (2), 31–37 (1975)].
3. M. M. Mazurenko, A. L. Skrelin, and A. S. Toporets, “Recording goniospectrophotometric apparatus with high angular resolution for the visible and UV region,” Sov. J. Opt. Technol. 44(6), 355–367 (1977) [Opt. Mekh. Promst. (6), 26–33 (1977)].
4. A. S. Toporets, The Optics of a Rough Surface (Mashinostroenie, Leningrad, 1988).
5. I. A. Nepogodin, K. I. Mal’chonok, D. T. Tiranov, and V. A. Nevzorov, “Goniophotometer for the study of the bidirectional reflective characteristics of materials,” Sov. J. Opt. Technol. 51(3), 144–145 (1984) [Opt. Mekh. Promst. (3), 19–24 (1984)].
6. K. E. Torrance, E. M. Sparrow, and R. C. Birkebak, “Polarization, directional distribution and off-specular peak phenomena in light reflected from roughened surfaces,” J. Opt. Soc. Am. 56(7), 916–925 (1966).
7. R. L. Cook and K. E. Torrance, “A reflectance model for computer graphics,” ACM SIGGRAPH Comput. Graphics 15(3), 307–316 (1981).
8. X. D. He, K. E. Torrance, F. X. Sillon, and D. P. Greenberg, “A comprehensive physical model for light reflection,” ACM SIGGRAPH Comput. Graphics 25(4), 175–186 (1991).
9. S. K. Nayar and M. Oren, “Generalization of the Lambertian model and implications for machine vision,” Int. J. Comput. Vis. 14(3), 227–251 (1995).
10. F. G. Bass and I. M. Fuks, Scattering of Waves on Statistically Uneven Surfaces (Nauka, Moscow, 1972).
11. L. V. Labunets, “Mathematical and physical modeling of the transport characteristics of 3D objects in a single-position lidar system,” Radiotekh. Elektron. 47(3), 308–321 (2002).
12. L. V. Labunets and N. N. Anishchenko, “Structural analysis of the transport characteristics of 3D objects in a single-position lidar system,” Radiotekh. Elektron. 56(2), 163–177 (2011).
13. L. V. Labunets, Digital Modeling of the Optical Reflective Characteristics of Targets in Real Time (Izd. MGTU im. N. É. Baumana, Moscow, 2013).
14. K. E. Torrance and E. M. Sparrow, “Theory for off-specular reflection from roughened surfaces,” J. Opt. Soc. Am. 57(9), 1105–1114 (1967).
15. V. K. Polyanskiı˘ and V. P. Rvachev, “The scattering of light accompanying reflection from statistically distributed microareas: a diffraction treatment,” Opt. Spektrosk. 22(2), 279–287 (1967).
16. A. P. Prishivalko, The Reflection of Light from Absorbing Media (AN BSSR, Minsk, 1963).
17. A. Misnar, Thermal Strength of Solids, Liquids, Gases, and Their Composites (Mir, Moscow, 1968).
18. L. V. Labunets, “Interpolation approximation of the probability of shadowings of a ray by a rough surface,” Radiotekh. Elektron. 46(4), 464–470 (2001).
19. M. Baudin, Nelder-Mead User’s Manual (Consortium Scilab - Digiteo, 2010), https://www.scilab.org/sites/default/files/neldermead.pdf.
20. F. N. Fritsch and R. E. Carlson, “Monotone piecewise cubic interpolation,” SIAM J. Numer. Anal. 17, 238–246 (1980).
21. E. A. Gustavo, P. A. Batista, E. J. Keogh, O. M. Tataw, and M. A. Vinícius de Souza, “CID: an efficient complexity-invariant distance for time series,” Data Min. Knowl. Discovery 28(3), 634–669 (2014).