DOI: 10.17586/1023-5086-2019-86-10-54-65
Research on spectral reflectance reconstruction based on compressive sensing by gradual modulation wheel
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Lei-hong Zhang, Hualong Ye, Bei Li, Dawei Zhang, Kaimin Wang, Jian Chen Research on spectral reflectance reconstruction based on compressive sensing by gradual modulation wheel (Восстановление методом сжатого считывания спектра отражения с использованием градуального модулирующего диска) [на англ. яз.] // Оптический журнал. 2019. Т. 86. № 10. С. 54–65. http://doi.org/10.17586/1023-5086-2019-86-10-54-65
Lei-hong Zhang, Hualong Ye, Bei Li, Dawei Zhang, Kaimin Wang, Jian Chen Research on spectral reflectance reconstruction based on compressive sensing by gradual modulation wheel (Восстановление методом сжатого считывания спектра отражения с использованием градуального модулирующего диска) [in English] // Opticheskii Zhurnal. 2019. V. 86. № 10. P. 54–65. http://doi.org/10.17586/1023-5086-2019-86-10-54-65
Lei-hong Zhang, Hualong Ye, Bei Li, Dawei Zhang, Kaimin Wang, and Jian Chen, "Research on spectral reflectance reconstruction based on compressive sensing by a gradual modulation wheel," Journal of Optical Technology. 86(10), 647-656 (2019). https://doi.org/10.1364/JOT.86.000647
The spectral reflectance of an object can show the color of an object from its intrinsic properties. As a result, it is very important to reconstruct the spectral reflectance of the object. In this paper, a method of spectral reflectance reconstruction based oncompressive sensing by gradual modulation wheel is proposed. A light source modulated by a grating and a gradual modulation wheel is irradiated onto an object, and the spectral reflectance is received by a single pixel detector. Different experimental devices are set up for color block and multispectral image. The spectral reflectance of the multispectral image is further modulated by a spatial modulator, and then the multispectral image is received by a single pixel detector. In the simulation experiment, the effect of different cycle transformation on the gradual modulation wheel is investigated and the objective evaluations are structural similarity, peak signal to noise ratio and root mean square error, which has allowed to determine exact conditions for the best spectral reflectance reconstruction and the accurate copying of the multispectral image.
single pixel detector, spectral reflectance,gradual modulation wheel,sine modulation curves
Acknowledgements:This study is supported by the Natural Science Foundation of Shanghai (Grant No. 18ZR1425800), the Open Project of Anhui Province Key Laboratory of Nondestructive Evaluation (Grant No. CGHBMWSJC03), and the National Natural Science Foundation of China (Grant No. 61875125).
OCIS codes: 330.1690, 330.1710
References:1. Barakzehi M., Amirshahi S.H., Peyvandi S. et al. Reconstruction of total radiance spectra of fluorescent samples by means of nonlinear principal component analysis// Journal of the Optical Society of America A. 2013.V. 30(9). P. 1862–1870.
2. Chen S., Lin X., Yuen C. et al. Recovery of Raman spectra with low signal-to-noise ratio using Wiener estimation // Optics Express. 2014.V. 22(10). P. 12102-14.
3. Kim B.G., Han J.W., Park S.B. Spectral reflectivity recovery from the tristimulus values using a hybrid method // Journal of the Optical Society of America A. 2012. V. 29(29). P. 2612–2621.
4. August Y., Stern A. Compressive sensing spectrometry based on liquid crystal devices// Optics Letters. 2013. V. 38(23). P. 4996-9.
5. Bian L., Suo J., Situ G. et al. Multispectral imaging using a single bucket detector // Physics. 2015. V. 6. 6 p.
6. Clemente P., Durán V., Tajahuerce E. et al. Compressive holography with a single-pixel detector // Optics Letters. 2013. V. 38(14). P. 2524–2527.
7. Yuan S., Liu X., Zhou X. et al. Multiple-image encryption scheme with a single-pixel detector// Journal of Modern Optics. 2016. V. 15. P. 1–9.
8. Liu X.F., Yu W.K., Yao X.R. et al. Measurement dimensions compressed spectral imaging with a single point detector // Optics Communications.2016. V. 365. P. 173–179.
9. Zhang L., Liang D., Li B. et al. Study on the key technology of spectral reflectivity reconstruction based on sparse prior by a single-pixel detector // Photonics Research. 2016. V. 4(3). P. 115.
10. Wang Z., Bovik A.C., Sheikh H.R. et al. Image quality assessment: from error visibility to structural similarity // IEEE Transactions on Image Processing. 2004. V. 13(4). P. 600–612.
11. Yeo C., Tan H.L., Tan Y.H. SSIM-based adaptive quantization in HEVC// IEEE International Conference on Acoustics, Speech and Signal Processing. 2013. V. 32(3). P. 1690–1694.
12. Rehman A., Wang Z., Brunet D. et al. SSIM-inspired image denoising using sparse representations // Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing. May 22–27. 2011. Prague Congress Center, Prague, Czech Republic. 2011. P. 1121–1124.
13. Chen S., Lin X., Yuen C. et al. Recovery of Raman spectra with low signal-to-noise ratio using Wiener estimation // Optics Express. 2014.V. 22(10). P. 12102-14.
14. Yoo Ji-Hoon, Kyung Wang-Jun, Ha Ho-Gun. Estimation of reflectance based on properties of selective spectrum with adaptive Wiener estimation// Proc Spie. 2013. V. 8652(2). P. 86520–86527.
15. Lin M.C., Tsai C.W., Tien C.H. Spectral image reconstruction by a tunable LED illumination // Proc. Spie. 2013. V. 8870(5). P. 441–443.