DOI: 10.17586/1023-5086-2019-86-10-71-76
УДК: 535.8
Synthesis of glasses with a high content of divalent tin and fabrication of fiber lightguides based on them
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Вельмискин В.В., Галаган Б.И., Денкер Б.И., Исхакова Л.Д., Машинский В.М., Сверчков С.Е. Синтез стёкол с высоким содержанием двухвалентного олова и изготовление волоконных световодов на их основе // Оптический журнал. 2019. Т. 86. № 10. С. 71–76. http://doi.org/10.17586/1023-5086-2019-86-10-71-76
Velmiskin V.V., Galagan B.I., Denker B.I., Iskhakova L.D., Mashinskiy V.M., Sverchkov S.E. Synthesis of glasses with a high content of divalent tin and fabrication of fiber lightguides based on them [in Russian] // Opticheskii Zhurnal. 2019. V. 86. № 10. P. 71–76. http://doi.org/10.17586/1023-5086-2019-86-10-71-76
V. V. Vel’miskin, B. I. Galagan, B. I. Denker, L. D. Iskhakova, V. M. Mashinskiĭ, and S. E. Sverchkov, "Synthesis of glasses with a high content of divalent tin and fabrication of fiber lightguides based on them," Journal of Optical Technology. 86(10), 661-665 (2019). https://doi.org/10.1364/JOT.86.000661
A procedure for the synthesis of glasses with satisfactory optical quality in the SnO-GeO2-SiO2 system has been developed. Using the rod-in-tube method, SnO-containing lightguide fibers were fabricated both in a quartz cladding and in a cladding of the more fusible Shott 8253 multicomponent aluminosilicate glass.
tin-containing glasses, optical fiber with tin-containing core
Acknowledgements:OCIS codes: 160.2750, 060.2290
References:1. M. M. Karim, “A study of tin oxides in silicate based glasses,” Ph.D. thesis (University of Warwick, Warwick, England, 1995), http://wrap.warwick.ac.uk/36289/1/WRAP_THESIS_Karim_1995.pdf.
2. H. Takebe, W. Nonaka, T. Kubo, J. Cha, and M. Kuwabara, “Preparation and properties of transparent SnO–P 2 O 5 glasses,” J. Phys. Chem. Solids 68(5–6), 983–986 (2007).
3. H. Liu, J. Ma, J. Gong, and J. Xu, “The structure and properties of SnF2-SnO-P2 O 5 glasses,” J. Non-Cryst. Solids 419, 92–96 (2015).
4. J. W. Lim, S. W. Yung, and R. K. Brow, “Properties and structure of binary tin phosphate glasses,” J. Non-Cryst. Solids 357(14) 2690–2694 (2011).
5. A. Hayashi, M. Nakai, M. Tatsumisago, T. Minami, Y. Himei, Y. Miura, and M. Katada, “Structural investigation of SnO–B2 O 3 glasses by solid-state NMR and X-ray photoelectron spectroscopy,” J. Non-Cryst. Solids 306(3), 227–237 (2002).
6. J. Silver, E. A. D. White, and J. D. Donaldson, “Glass formation in the system SnO-GeO 2 ,” J. Mater. Sci. 12(4), 827–829 (1977).
7. D. Holland, M. Smith, I. Poplett, J. Johnson, M. Thomas, and J. Bland, “Tin germanate glasses,” J. Non-Cryst. Solids 293–295, 175–181 (2001).
8. B. I. Denker, B. I. Galagan, L. I. Iskhakova, and E. M. Dianov, “Infrared luminescent properties of tin-silicate oxide glass,” Appl. Phys. B 120(1), 13–15 (2015).
9. A. I. Chernov, B. I. Denker, R. Ermakov, B. I. Galagan, L. D. Iskhakova, S. E. Sverchkov, V. Velmiskin, and E. M. Dianov, “Synthesis and photoluminescent properties of SnO-containing germanate and germanosilicate glasses,” Appl. Phys. B 122(9), 243 (2016).
10. B. I. Denker, B. I. Galagan, S. E. Sverchkov, and E. M. Dianov, “SnO-containing oxide glasses emitting in 1.0–2.0 μm spectral range,” Laser Phys. 28, 065801 (2018).