DOI: 10.17586/1023-5086-2019-86-12-03-14
УДК: 004.932
Optimization-based image reconstruction method for super-resolution structured-illumination microscopy
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Беззубик В.В., Белашенков Н.Р., Васильев В.Н., Иночкин Ф.М. Оптимизационный метод реконструкции изображения для сверхразрешающей микроскопии структурированного освещения // Оптический журнал. 2019. Т. 86. № 12. С. 3–14. http://doi.org/10.17586/1023-5086-2019-86-12-03-14
Bezzubik V.V., Belashenkov N.R., Vasiliev V.N., Inochkin F.M. Optimization-based image reconstruction method for super-resolution structured-illumination microscopy [in Russian] // Opticheskii Zhurnal. 2019. V. 86. № 12. P. 3–14. http://doi.org/10.17586/1023-5086-2019-86-12-03-14
V. V. Bezzubik, N. R. Belashenkov, V. N. Vasilyev, and F. M. Inochkin, "Optimization-based image reconstruction method for super-resolution structured-illumination microscopy," Journal of Optical Technology. 86(12), 748-757 (2019). https://doi.org/10.1364/JOT.86.000748
This paper discuses the problem of reconstructing images in digital form with resolution that exceeds the limiting resolution of a diffraction-limited system from a set of images with spatially modulated illumination. The reconstruction method described here is based on a numerical–analytical solution of the problem of minimizing the mismatch functional of an array of recorded images with their mathematical model. Models of planar and three-dimensional objects are considered, and the effectiveness of the proposed method in computational experiments is demonstrated. By comparison with the classical reconstruction method, the proposed method is distinguished by good stability against deviations of the system parameters from the calculated values, allows the spatial-modulation parameters of the illumination to be automatically estimated, and makes it possible to use a priori knowledge concerning the signal to be reconstructed. Our results can be used when programs are being developed for reconstructing images in structured-illumination microscopy.
diffraction limit, optical super-resolution, structured-illumination microscopy, image reconstruction, deconvolution, optimization problem, conjugate-gradient method, iterative algorithm
Acknowledgements:The research was carried out in ITMO University and was supported by the Ministry of Education and Science of the Russian Federation (project No. 074-11-2018-004).
OCIS codes: 100.3010, 100.664, 100.3190, 100.1830, 180.2520, 120.4120
References:1. L. Schermelleh, R. Heintzmann, and H. Leonhardt, “A guide to super-resolution fluorescence microscopy,” J. Cell. Biol. 190, 165–175 (2010).
2. J. Tam and D. Merino, “Stochastic optical reconstruction microscopy (STORM) in comparison with stimulated emission depletion (STED) and other imaging methods,” J. Neurochem. 135, 643–658 (2015).
3. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
4. E. Betzig, G. H. Patterson, R. Sougrat, O. Wolf Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
5. S. T. Hess, T. P. K. Girirajan, and M. D. Mason, “Ultra-high resolution imaging by fluorescence photoactivation localization microscopy,” Biophys. J. 91(11), 4258–4272 (2006).
6. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
7. G. Zheng, R. Horstmeyer, and C. Yang, “Wide-field, high-resolution Fourier ptychographic microscopy,” Nat. Photonics 7(9), 739–745 (2013).
8. R. Heintzmann and C. G. Cremer, “Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating,” Proc. SPIE 3568, 185–197 (1999).
9. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microscopy 198(2), 82–87 (2000).
10. M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. R. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94, 4957–4970 (2008).
11. P. Kner, B. Chhun, E. R. Griffis, L. Winoto, and M. G. L. Gustafsson, “Super-resolution video microscopy of live cells by structured illumination,” Nat. Methods 6, 339–342 (2009).
12. D. Dan, M. Lei, B. Yao, W. Wang, M. Winterhalder, A. Zumbusch, Y. Qi, L. Xia, S. Yan, Y. Yang, P. Gao, T. Ye, and W. Zhao, “DMD-based LED-illumination super-resolution and optical sectioning microscopy,” Sci. Rep. 3, 1116 (2013).
13. M. G. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. USA 102, 13081–13086 (2005).
14. E. H. Rego, L. Shao, J. J. Macklin, L. Winoto, G. A. Johansson, N. Kamps-Hughes, M. W. Davidson, and M. G. L. Gustafsson, “Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution,” Proc. Natl. Acad. Sci. USA 109, E135–E143 (2012).
15. J. Mertz and J. Kim, “Scanning light-sheet microscopy in the whole mouse brain with HiLo background rejection,” J. Biomed. Opt. 15(1), 016027 (2010).
16. A. Lal, C. Shan, and P. Xi, “Structured illumination microscopy image reconstruction algorithm,” IEEE J. Sel. Top. Quantum Electron. 22, 50–63 (2016).
17. X. Zhou, M. Lei, D. Dan, B. Yao, Y. Yang, J. Qian, G. Chen, and P. R. Bianco, “Image recombination transform algorithm for super-resolution structured illumination microscopy,” J. Biomed. Opt. 21(9), 096009 (2016).
18. Y. Zhang, S. Lang, H. Wang, J. Liao, and Y. Gong, “Super-resolution algorithm based on Richardson–Lucy deconvolution for three-dimensional structured illumination microscopy,” J. Opt. Soc. Am. A 36, 173–178 (2019).
19. M. Muller, V. Monkemoller, S. Henning, W. Hubner, and T. Huser, “Open-source image reconstruction of super-resolution structured illumination microscopy data in ImageJ,” Nat. Commun. 7, 10980 (2016).
20. F. Orieux, E. Sepulveda, V. Loriette, B. Dubertret, and J.-C. Olivo-Marin, “Bayesian estimation for optimized structured illumination microscopy,” IEEE Trans. Image Process. 21(2), 601–614 (2012).
21. P. J. Verveer and T. M. Jovin, “Efficient super-resolution restoration algorithms using maximum a posteriori estimations with application to fluorescence microscopy,” J. Opt. Soc. Am. A 14(8), 1696–1706 (1997).
22. R. G. Lane, “Methods for maximum-likelihood deconvolution,” J. Opt. Soc. Am. A 13, 1992–1998 (1996).
23. I. G. Chernorutski, Optimization Methods: Computer Technologies (BKhV-Peterburg, St. Petersburg, 2011).
24. F. M. Inochkin, P. Pozzi, V. V. Bezzubik, and N. R. Belashenkov, “Increasing the space-time product of super-resolution structured illumination microscopy by means of two-pattern illumination,” Proc. SPIE 10330, 1–11 (2017).
25. M. Zibulevsky and M. Elad, “L1-L2 optimization in signal and image processing,” IEEE Signal Process. Mag. 27(3), 76–88 (2010).
26. A. Beck and M. Teboulle, “Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems,” IEEE Trans. Image Process. 18(11), 2419–2434 (2009).
27. A. Panagiotopoulou, “Regularized super-resolution image reconstruction employing robust error norms,” Opt. Eng. 48(11), 117004 (2009).
28. S. Farsiu, M. D. Robinson, M. Elad, and P. Milanfar, “Fast and robust multi-frame super-resolution,” IEEE Trans. Image Process. 13(10), 1327–1344 (2004).