DOI: 10.17586/1023-5086-2019-86-12-43-48
УДК: 535.417, 533.9.03, 537.53, 621.387
Multispectral holographic microscopy using a laser plasma source
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Мачихин А.С., Власова А.Г., Польщикова О.В., Пожар В.Э., Горский Е.В., Чурин А.Е., Субин А.Н. Использование лазерного плазменного источника в мультиспектральной голографической микроскопии // Оптический журнал. 2019. Т. 86. № 12. С. 43–48. http://doi.org/10.17586/1023-5086-2019-86-12-43-48
Machikhin A.S., Vlasova A.G., Polshchikova O.V., Pozhar V.E., Gorskiy E.V., Churin A.E., Subin A.N. Multispectral holographic microscopy using a laser plasma source [in Russian] // Opticheskii Zhurnal. 2019. V. 86. № 12. P. 43–48. http://doi.org/10.17586/1023-5086-2019-86-12-43-48
A. S. Machikhin, A. G. Vlasova, O. V. Polschikova, V. E. Pozhar, E. V. Gorsky, A. E. Churin, and A. N. Subin, "Multispectral holographic microscopy using a laser plasma source," Journal of Optical Technology. 86(12), 781-785 (2019). https://doi.org/10.1364/JOT.86.000781
The possibility of using a continuous optical discharge excited by laser radiation as a radiation source in multispectral digital holographic microscopy is investigated. It has been experimentally shown that tunable monochromatization of discharge radiation makes it possible to obtain high-quality digital holograms. Examples of recorded holograms and spatial phase-delay distributions calculated on their basis, introduced by optically transparent samples into the light wave, are presented.
multispectral digital holographic microscopy, broadband radiation, laser plasma source, continuous optical discharge
Acknowledgements:The research was supported by the Russian Foundation for Basic Research (project No. 18-38-20057). The results of the study were obtained using equipment at the Center for Collective Use, Scientific and Technological Center for Unique Instrumentation, Russian Academy of Sciences.
OCIS codes: 090.1995, 090.6186, 350.5400
References:1. M. K. Kim, Digital Holographic Microscopy: Principles, Techniques, and Applications (Springer, New York, 2011).
2. M. Paturzo, V. Pagliarulo, V. Bianco, P. Memmolo, L. Miccio, F. Merola, and P. Ferraro, “Digital holography, a metrological tool for quantitative analysis: trends and future applications,” Opt. Lasers Eng. 104, 32–47 (2018).
3. G. Nehmetallah and P. P. Banerjee, “Applications of digital and analog holography in three-dimensional imaging,” Adv. Opt. Photon. 4, 472–553 (2012).
4. Y. Park, T. Yamauchi, W. Choi, R. Dasari, and M. S. Feld, “Spectroscopic phase microscopy for quantifying hemoglobin concentrations in intact red blood cells,” Opt. Lett. 34(23), 3668–3670 (2009).
5. D. Fu, W. Choi, Y. Sung, Z. Yaqoob, R. R. Dasari, and M. Feld, “Quantitative dispersion microscopy,” Biomed. Opt. Express 1(2), 347–353 (2010).
6. B. Kemper, L. Kastl, J. Schnekenburger, and S. Ketelhut, “Multispectral digital holographic microscopy for enhanced quantitative phase imaging of living cells,” Proc. SPIE 10503, 1050313 (2018).
7. M. Rinehart, Y. Zhu, and A. Wax, “Quantitative phase spectroscopy,” Biomed. Opt. Express 3, 958–965 (2012).
8. B. Bhaduri, C. Edwards, H. Pham, R. Zhou, T. H. Nguyen, L. L. Goddard, and G. Popescu, “Diffraction phase microscopy: principles and applications in materials and life sciences,” Adv. Opt. Photon. 6, 57–119 (2014).
9. N. Demoli, D. Vukicevic, and M. Torzynski, “Dynamic digital holographic interferometry with three wavelengths,” Opt. Express 11(7), 767–774 (2003).
10. S. G. Kalenkov, G. S. Kalenkov, and A. E. Shtanko, “Hyperspectral holography: an alternative application of the Fourier transform spectrometer,” J. Opt. Soc. Am. B 34(5), B49–B55 (2017).
11. A. Machikhin, O. Polschikova, A. Ramazanova, and V. E. Pozhar, “Multi-spectral quantitative phase imaging based on filtration of light via ultrasonic wave,” J. Opt. 19(7), 075301 (2017).
12. H. Pham, B. Bhaduri, H. Ding, and G. Popescu, “Spectroscopic diffraction phase microscopy,” Opt. Lett. 37(16), 3438–3440 (2012).
13. S. Kosmeier, P. Langehanenberg, G. von Bally, and B. Kemper, “Reduction of parasitic interferences in digital holographic microscopy by numerically decreased coherence length,” Appl. Phys. B 106(1), 107–115 (2012).
14. N. A. Generalov, V. P. Zimakov, G. I. Kozlov, V. A. Masyukov, and Yu. P. Raizer, “Continuously burning optical discharge,” Pis’ma Zh. Eksp. Teor. Fiz. 11(9), 447–449 (1970).
15. B. F. Mul’chenko, Yu. P. Raizer, and V. A. Epshtein, “High-pressure laser spark ignited by an external plasma source,” J. Exp. Theor. Phys. 32(6), 1069–1073 (1971).
16. L. Klein, “Measurements of spectral emission and absorption of a high pressure xenon arc in the stationary and the flashed modes,” Appl. Opt. 7(4), 677–685 (1968).
17. V. Dubey, G. Singh, V. Singh, A. Ahmad, and D. Singh Mehta, “Multispectral quantitative phase imaging of human red blood cells using inexpensive narrowband multicolor LEDs,” Appl. Opt. 55(10), 2521–2525 (2016).