DOI: 10.17586/1023-5086-2019-86-12-65-75
Abnormal railway fastener detection using minimal significant regions and local binary patterns
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Hong Fan, Qiang Wang, Yun Luo, Bailin Li Abnormal railway fastener detection using minimal significant regions and local binary patterns (Обнаружение дефектов в клеммных креплениях рельсов с использованием минимальных значимых областей и локальных бинарных шаблонов) [на англ. яз.] // Оптический журнал. 2019. Т. 86. № 12. С. 65–75. http://doi.org/10.17586/1023-5086-2019-86-12-65-75
Hong Fan, Qiang Wang, Yun Luo, Bailin Li Abnormal railway fastener detection using minimal significant regions and local binary patterns (Обнаружение дефектов в клеммных креплениях рельсов с использованием минимальных значимых областей и локальных бинарных шаблонов) [in English] // Opticheskii Zhurnal. 2019. V. 86. № 12. P. 65–75. http://doi.org/10.17586/1023-5086-2019-86-12-65-75
Hong Fan, Qiang Wang, Yun Luo, and Bailin Li, "Abnormal railway fastener detection using minimal significant regions and local binary patterns," Journal of Optical Technology. 86(12), 799-807 (2019). https://doi.org/10.1364/JOT.86.000799
Railway fastener is an important part of the railway system. Keeping the fasteners effective is essential to ensure the safe operation of the railway, so abnormal railway fastener detection is a main task of railway maintenance. With the development of railway system, the traditional manual fastener detection method has been unable to meet the application requirements, because it is very slow, costly, and dangerous. In this paper, we propose a novel method for abnormal fastener detection based on computer vision, which can detect missing and ectopic fasteners automatically. In this method, Minimal Significant Region is extracted in order to improve the fastener localization accuracy. Then, fastener recognition is operated using local binary features and Support Vector Machine classifier based on the fastener sub-images which are obtained by fastener localization. The proposed method is evaluated in our own database which is obtained by railway inspection system in different environments. The experimental results have shown improved performance against the state-of-the-art algorithm.
railway fastener, image classification, visual inspection, machine vision
Acknowledgements:This work was supported by Sichuan Province Science and Technology Support Program Project under Grant 2018GZ0361. The authors also thank the anonymous reviewers for their constructive comments and suggestions.
OCIS codes: 150.1135
References:1. Li Q., Ren S. A real-time visual inspection system for discrete surface defects of rail heads // IEEE Trans. Instrumentation and Measurement. 2012. V. 61(8). P. 2189–2199.
2. Wu X., Yuan P., Peng Q. et al. Detection of bird nests in overhead catenary system images for high-speed rail // Pattern Recognition. 2016. V. 51. P. 242–254.
3. Liu Z., Wang L., Li C. et al. A high-precision loose strands diagnosis approach for isoelectric line in high-speed railway // IEEE Trans. Industrial Informatics. 2018. V. 14(3). P. 1067–1077.
4. Qiao Y., Cappelle C., Ruichek Y. Visual localization across seasons using sequence matching based on multi-feature combination // Sensors. 2017. V. 17. P. 2442.
5. Aytekin Ç., Rezaeitabar Y., Dogru S. et al. Railway fastener inspection by real-time machine vision // IEEE Trans. Systems, Man, and Cybernetics: Systems. 2015. V. 45(7). P. 1101–1107.
6. Singh M., Singh S., Jaiswal. et al. Autonomous rail track inspection using vision based system // Proceedings of the IEEE Int. Conf.Comput. Intell. Homeland Security Personal Safety. 2006. P. 56–59.
7. Stella E., Mazzeo P., Nitti M. e t a l. Visual recognition of missing fastening elements for railroad maintenance // Proceedings of IEEE Int. Conf. Intell. Transp. Syst. 2002. P. 94–99.
8. Marino F., Distante A., Mazzeo P. et al. A real-time visual inspection system for railway maintenance: Automatic hexagonal-headed bolts detection // IEEE Trans. Syst., Man, Cybern. C, Appl. Rev. 2007. V. 37(3). P. 418–428.
9. Mazzeo P., Nitti M., Stella E. et al. Visual recognition of fastening bolts for railroad maintenance // Pattern Recognit. Lett. 2004. V. 25(6). P. 669–677.
10. Hsieh H., Chen N., Liao C. Visual recognition system of elastic rail clips for mass rapid transit systems // Proceedings of the Joint Rail Conference and Internal Combustion Engine Division Spring Technical Conference (JRC/IC). 2007. P. 319–325.
11. Ruvo P., Distante A., Stella E. et al. A GPU-based vision system for real time detection of fastening elements in railway inspection // Proceedings of 16th IEEE Int. Conf. Image Process. 2009. P. 2333–2336.
12. Yang J., Tao W., Liu M. et al. An efficient direction field-based method for the detection of fasteners on high-speed railways // Sensors. 2011. V. 11. V. 7364–7381.
13. Xia Y., Xie F., Jiang Z. Broken railway fastener detection based on adaboost algorithm // Proceedings of Optoelectron. Image Process. 2010. P. 313–316.
14. Resendiz E., Hart J., Ahuja N. Automated visual inspection of railroad tracks // IEEE Trans. Intell. Transp. Syst. 2013. V. 14(2). P. 751–760.
15. Liu J., Li B., Luo J. et al. Integrating the symmetry image and improved sparse representation for railway fastener classification and defect recognition // Mathematical Problems in Engineering. 2015. P. 462528.
16. Li Y., Otto C., Haas N. et al. Component-based track inspection using machine-vision technology // Proceedings of 1st ACM Int. Conf. Multimedia Retr. 2011. V. 60.
17. Li Y., Trinh H., Haas N. et al. Rail component detection, optimization, and assessment for automatic rail track inspection // IEEE Trans. Intell. Transp. Syst. 2013.V. 15(2). P. 760–770.
18. Feng H., Jiang Z., Xie F. et al. Automatic fastener classification and defect detection in vision-based railway inspection systems // IEEE Trans. Instrumentation and Measurement. 2014. V. 63(4). P. 877–888.
19. Khan R., Islam S., Biswas R. Automatic detection of defective rail anchors // Proc. IEEE 17th ITSC. 2014. P. 1583–1588.
20. Thanawit P., Thanarat H., Sangsan L. A vision-based method for the detection of missing rail fasteners // Proc. 5th IEEE Int. Conf. Signal Image Process. Appl. ICSIPA. 2017. P. 419–424.
21. Gibert X., Patel V.M., Chellappa R. Robust fastener detection for autonomous visual railway track inspection // Proc. IEEE WACV. 2015. P. 694–701.
22. Gibert X., Patel V.M., Chellappa R. Deep multitask learning for railway Track Inspection // IEEE Transactions on Intelligent Transportation Systems. 2017. V. 18(1). P. 153–164.
23. Ojala T., Pietikainen M., Maenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns // IEEE Trans. Pattern Analysis and Machine Intelligence. 2002. V. 24(7). P. 971–987.