ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2019-86-12-83-90

УДК: 666.3, 536.413, 539.26

Structural, optical, and luminescence properties of ZnO:Er ceramic

For Russian citation (Opticheskii Zhurnal):

Горохова Е.И., Еронько С.Б., Орещенко Е.А., Родный П.А., Веневцев И.Д., Кульков А.М., Сухаржевская Е.С. Структурные, оптические и люминесцентные свойства ZnO:Er-керамики // Оптический журнал. 2019. Т. 86. № 12. С. 83–90. http://doi.org/10.17586/1023-5086-2019-86-12-83-90

 

Gorokhova E.I., Eronko S.B., Oreshchenko E.A., Rodniy P.A., Venevtsev I.D., Kulkov A.M., Sukharzhevskaya E.S. Structural, optical, and luminescence properties of ZnO:Er ceramic [in Russian] // Opticheskii Zhurnal. 2019. V. 86. № 12. P. 83–90. http://doi.org/10.17586/1023-5086-2019-86-12-83-90

For citation (Journal of Optical Technology):

E. I. Gorokhova, S. B. Eron’ko, E. A. Oreshchenko, P. A. Rodnyi, I. D. Venevtsev, A. M. Kul’kov, and E. S. Sukharzhevskaya, "Structural, optical, and luminescence properties of ZnO:Er ceramic," Journal of Optical Technology. 86(12), 814-819 (2019). https://doi.org/10.1364/JOT.86.000814

Abstract:

This paper discusses the characteristics of ZnO:Er ceramics fabricated by uniaxial hot pressing. It establishes that the introduction of 0.16–1.0 mass% erbium into the zinc oxide structure reduces the grain size of the ceramic and causes absorption bands to appear in the visible and IR regions, corresponding to interconfiguration transitions from the ground state to the excited states of the Er3+Er3+ ions, along with characteristic emission bands in the visible region. Increasing the erbium concentration causes the long-wavelength transmission limit of the ZnO:Er ceramic to shift toward shorter wavelengths by 2–3 µm relative to the undoped ceramic; this is associated with an increase of the charge-carrier concentration from 4.9×10184.9×1018 to 1.4×1019cm31.4×1019cm−3. Moreover, as the erbium concentration is increased, the defect luminescence band becomes less intense, and the scintillation burst falls off more rapidly.

Keywords:

erbium-doped zinc oxide, uniaxial hot pressing, ceramics, luminescence, falloff time

Acknowledgements:

The research was supported by the Russian Foundation for Basic Research (projects Nos. 19-03-00855, 18-52-76002).

OCIS codes: 160.2540, 160.4760

References:

1. U. Orgur, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshnikov, S. Dogan, V. Avrutin, S.-J. Cho, and H. Morkoc, “A comprehensive review of ZnO materials and devices,” J. Appl. Phys. 98, 041301 (2005).
2. J. S. Neal, N. C. Giles, X. Yang, R. A. Wall, K. B. Ucer, R. T. Williams, D. J. Wisniewski, L. A. Boatner, V. Rengarajan, and B. Nemeth, “Evaluation of melt-grown, ZnO single crystals for use as alpha-particle detectors,” IEEE Trans. Nucl. Sci. 55, 1397–1403 (2008).
3. E. I. Gorokhova, S. B. Eron’ko, E. A. Oreshchenko, A. V. Sandulenko, P. A. Rodny˘ı, K. A. Chernenko, I. D. Venevtsev, A. M. Kul’kov, F. Muktepavela, and P. Boutachkov, “Structural, optical, and luminescence properties of ZnO:Ga optical scintillation ceramic,” J. Opt. Technol. 85(11), 729–737 (2018) [Opt. Zh. 85(11), 90–100 (2018)].
4. E. I. Gorokhova, S. B. Eron’ko, A. M. Kul’kov, E. A. Oreshchenko, K. L. Simonova, K. A. Chernenko, I. D. Venevtsev, P. A. Rodny˘ı, K. P. Lott, and H. Wieczorek, “Development and study of ZnO:In optical scintillation ceramic,” J. Opt. Technol. 82(12), 837–842 (2018) [Opt. Zh. 82(12), 78–85 (2015)].
5. M. M. Mezdrogina, M. V. Eremenko, A. N. Smirnov, V. N. Petrov, and E. I. Terukov, “Emission intensity of the λ = 1.54 μm line in ZnO films grown by magnetron sputtering, diffusion-doped with Ce, Yb, Er,” Semicond. Phys. 49(8), 992–999 (2015) [Fiz. Tekhn. Poluprovod. 49(8), 1016–1023 (2015)].
6. M. M. Mezdrogina, A. Ya. Vinogradov, M. V. Eremenko, V. S. Levitskii, E. I. Terukov, and Yu. V. Kozhanova, “Intensity of visible and IR emission of intracenter 4f transitions of RE ions in Er- and Tm-doped ZnO films with additional Ag, Li, and N impurities,” Opt. Spectrosc. 121(2), 220–228 (2016).
7. P. Loiko, O. Dymshits, A. Volokitina, I. Alekseeva, D. Shemchuk, M. Tsenter, A. Bachina, A. Khubetsov, E. Vilejshikova, P. Petrov, A. Baranov, and A. Zhilin, “Structural transformations and optical properties of glass-ceramics based on ZnO, β- and α-Zn2 SiO4 nanocrystals and doped with Er2 O3 and Yb2 O3 : Part I. The role of heat treatment,” J. Lumin. 202, 47–56 (2018).
8. B. Ghaemi, G. Zhao, S. Huang, J. Wang, and G. Han, “Structural and luminescence properties of Er-doped zinc–alumino silicate glass ceramic,” J. Am. Ceram. Soc. 95, 1911–1914 (2012).
9. P. A. Rodnyi, S. B. Mikhrin, A. N. Mishin, and A. V. Sidorenko, “Small-size pulsed X-ray source for measurements of scintillator decay time constants,” IEEE Trans. Nucl. Sci. 48(6), 2340–2343 (2001).
10. R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Cryst. A32, 751–767 (1976).
11. J. A. R. Márquez, C. M. B. Rodríguez, C. M. Herrera, E. R. Rosas, O. Z. Angel, and O. T. Pozos, “Effect of surface morphology of ZnO electrodeposited on photocatalytic oxidation of methylene blue dye. Part I: Analytical study,” Int. J. Electrochem. Sci. 6, 4059–4069 (2011).
12. X. Wang, X. Kong, G. Shan, Y. I. Yu, Y. Sun, L. Feng, K. Chao, S. Lu, and Y. Li, “Luminescence spectroscopy and visible up-conversion properties of Er3+ in ZnO nanocrystals,” J. Phys. Chem. B 108, 18408–18413 (2004).
13. S. S. Gorelik, Recrystallization of Metals and Alloys (Metallurgiya, Moscow, 1978).
14. I. P. Kuz’mina and V. P. Nikitenko, Zinc Oxide: Production and Optical Properties (Nauka, Moscow, 1984).
15. P. Saadatkia, G. Ariyawansa, K. D. Leedy, D. C. Look, L. A. Boatner, and F. A. Selim, “Fourier transform infrared spectroscopy measurements of multiphonon and free-carrier absorption in ZnO,” J. Electron. Mater. 45(12), 6329–6336 (2016).
16. X. Yang, “Electrical and optical properties of zinc oxide for scintillator applications,” Dissertation for the degree of Doctor of Philosophy in Physics (West Virginia University, Morgantown, West Virginia, 2008).
17. T. M. Borseth, B. G. Svensson, and A. Yu. Kuznetsov, “Identification of oxygen and zinc vacancy optical signals in ZnO,” Appl. Phys. Lett. 89, 262112 (2006).
18. C. Ton-That, L. Weston, and M. R. Phillips, “Characteristics of point defects in the green luminescence from Zn- and O-rich ZnO,” Phys. Rev. B 86, 115205 (2012).
19. J. D. Ye, S. L. Gu, F. Qin, S. M. Zhu, S. M. Liu, X. Zhou, W. Liu, L. Q. Hu, R. Zhang, Y. Shi, and Y. D. Zheng, “Correlation between green luminescence and morphology evolution of ZnO films,” Appl. Phys. A 81, 759–762 (2005).
20. Y. Y. Tay, T. T. Tan, F. Boey, M. H. Liang, J. Ye, Y. Zhao, T. Norby, and S. Li, “Correlation between the characteristic green emissions and specific defects of ZnO,” Phys. Chem. Chem. Phys. 12, 2373–2379 (2010).
21. S. Chen, G. Carraro, D. Barreca, A. Sapelkin, W. Chen, X. Huang, Q. Cheng, F. Zhang, and R. Binions, “Aerosol-assisted chemical vapour deposition of Ga-doped ZnO films for energy efficient glazing: effects of doping concentration on the film growth behaviour and opto-electronic properties,” J. Mater. Chem. A 3, 13039–13049 (2015).
22. W. M. Jadwisienczak, H. J. Lozykowski, A. Xu, and B. Patel, “Visible emission from ZnO doped with rare-earth ions,” J. Electron. Mater. 31(7), 776–784 (2002).
23. P. A. Rodnyi, Physical Processes in Inorganic Scintillators (CRC Press LLC, New York, 1997).