DOI: 10.17586/1023-5086-2019-86-12-91-95
УДК: 618.7.03, 628.58, 57.083
Effects of organic impurities on the photooxidation of Chicago Sky Blue 6B diazo dye in nitrate solutions
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Пантелеева Т.С., Колобкова Е.В., Дукельский К.В., Евстропьев С.К. Влияние органических примесей на фотоокисление диазокрасителя «Chicago Sky Blue 6B» в нитратных растворах // Оптический журнал. 2019. Т. 86. № 12. С. 91–95. http://doi.org/10.17586/1023-5086-2019-86-12-91-95
Panteleeva T.S., Kolobkova E.V., Dukelskiy K.V., Evstropiev S.K. Effects of organic impurities on the photooxidation of Chicago Sky Blue 6B diazo dye in nitrate solutions [in Russian] // Opticheskii Zhurnal. 2019. V. 86. № 12. P. 91–95. http://doi.org/10.17586/1023-5086-2019-86-12-91-95
T. S. Panteleeva, E. V. Kolobkova, K. V. Dukel’skiĭ, and S. K. Evstrop’ev, "Effects of organic impurities on the photooxidation of Chicago Sky Blue 6B diazo dye in nitrate solutions," Journal of Optical Technology. 86(12), 820-823 (2019). https://doi.org/10.1364/JOT.86.000820
The effects of polyvinylpyrrolidone, zinc nitrate, and cadmium nitrate on the spectral properties of Chicago Sky Blue 6B diazo dye in aqueous solutions and the variations of those properties under ultraviolet irradiation were studied. It was investigated how the photochemical oxidation of the dye is affected by polyvinylpyrrolidone, zinc nitrate, and cadmium nitrate additives in aqueous solutions. It was observed that in the presence of polyvinylpyrrolidone, the rate of photooxidation of the dye is significantly reduced.
photolysis, diazo dye, solution, nitrate, ultraviolet irradiation
OCIS codes: 160.0160, 310.0310, 160.2750, 160.4236
References:1. K. Schliephake, D. E. Mainwaring, G. T. Lonergan, I. K. Jones, and W. L. Baker, “Transformation and degradation of the disazo dye ChicagoSky Blue by a purified laccase from Pycnoporus cinnabarinus,” Enzyme Microb. Technol. 27, 100–107 (2000).
2. A. Ahmad, S. H. Mohd-Setapar, C. S. Chuong, A. Khatoon, W. A. Wani, R. Kumar, and M. Rafallah, “Recent advances in new generation dye removal technologies: novel search for approaches to reprocess wastewater,” RCS Adv. 5, 30801–30818 (2015).
3. A. Mohammad, K. Kapoor, and S. M. Mobin, “Improved photocatalytic degradation of organic dyes by ZnO-nanoflowers,” ChemistrySelect 1, 3483–3490 (2016).
4. D. E. Zavastin, S. Gherman, and I. Cretescu, “Removal of Direct Blue dye from aqueous solution using new polyurethane–cellulose acetate blend micro-filtration membrane,” Rev. Chim. 63(10), 1075–1078 (2012).
5. D. Chatterjee and S. Dasgupta, “Visible light induced photocatalytic degradation of organic pollutants,” J. Photochem. Photobiol. C 6(2), 186–205 (2005).
6. P. Warneck and C. Wurzinger, “Product quantum yields for the 305-nm photodecomposition of nitrate in aqueous solution,” J. Phys. Chem. 92, 6278–6283 (1988).
7. C. Minero, S. Chiron, G. Falletti, V. Maurino, E. Pelizzetti, R. Ajassa, M. E. Carlotti, and D. Vione, “Photochemical processes involving nitrite in surface water samples,” Aquat. Sci. 69(1), 71–85 (2007).
8. S. K. Evstropiev, V. N. Vasilyev, N. V. Nikonorov, E. V. Kolobkova, N. A. Volkova, and I. A. Boltenkov, “Photoactive ZnO nanosuspension for intensification of organics contaminations decomposition,” Chem. Eng. Process. 134, 45–50 (2018).
9. N. A. Volkova, S. K. Evstrop’ev, O. V. Istomina, and E. V. Kolobkova, “Photolysis of diazo dye in aqueous solutions of metal nitrates,” Opt. Spectrosc. 124(4), 489–493 (2018) [Opt. Spektrosk. 124(4), 472–476 (2018)].
10. Z. Zainal, L. K. Hui, M. Z. Hussein, Y. H. Taufiq-Yap, A. H. Abdullah, and I. Ramli, “Removal of dyes using immobilized titanium dioxide illuminated by fluorescent lamp,” J. Hazard. Mater. B 125, 113–120 (2005).
11. U. I. Gaya and A. H. Abdullah, “Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems,” J. Photochem. Photobiol. 9, 1–12 (2008).
12. M. Faisal, M. Aby Tariq, and M. Muneer, “Photocatalysed degradation of two selected dyes in UV-irradiated aqueous suspensions of titania,” Dyes Pigm. 72(2), 233–239 (2007).
13. Z. M. El-Bahy, A. A. Ismail, and R. M. Mohamed, “Enhancement of titania by doping rare earth for photodegradation of organic dye (Direct Blue),” J. Hazard. Mater. 166(1), 138–143 (2009).
14. C. B. Ong, L. Y. Ng, and A. W. Mohammad, “A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications,” Renewable Sustainable Energy Rev. 81(1), 536–551 (2018).
15. V. M. Kiselev, S. K. Evstrop’ev, and A. M. Starodubtsev, “Photocatalytic degradation and sorption of methylene blue on the surface of metal oxides in aqueous solutions of the dye,” Opt. Spectrosc. 123(5), 809–815 (2017) [Opt. Spektrosk. 123(5), 798–805 (2017)].
16. Y. Li, W. Zhang, J. Niu, and Y. Chen, “Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles,” ACS Nano 6, 5164–5173 (2012).
17. D. Toshihiro and N. Yoshio, “Formation and behavior of singlet molecular oxygen in TiO2 photocatalysis studied by detection of near-infrared phosphorescence,” J. Phys. Chem. 111, 4420–4424 (2007).
18. M. D. Hernandez-Alonso, J. M. Coronado, A. J. Maira, J. Soria, V. Loddo, and V. Augugliaro, “Ozone enhanced activity of aqueous titanium dioxide suspensions for photocatalytic oxidation of free cyanide ions,” Appl. Catal. B 39(3), 257–267 (2002).
19. J. He, W. Ma, J. He, J. Zhao, and J. C. Yu, “Photooxidation of azo dye in aqueous dispersions of H2 O2 /α-FeOOH,” Appl. Catal. B 39(3), 211–220 (2002).
20. N. Vela, M. Calín, M. J. Yáñez-Gascón, I. Garrido, G. Pérez-Lucas, J. Fenoll, and S. Navarro, “Solar reclamation of wastewater effluent polluted with bisphenols, phthalates and parabens by photocatalytic treatment with TiO2 /Na2 S2 O8 at pilot plant scale,” Chemosphere 212, 95–104 (2018).
21. N. Vela, M. Calín, M. J. Yáñez-Gascón, I. Garrido, G. Pérez-Lucas, J. Fenoll, and S. Navarro, “Photocatalytic oxidation of six endocrine disruptor chemicals in wastewater using ZnO at pilot plant scale under natural sunlight,” Environ. Sci. Pollut. Res. 25(35), 34995–35007 (2018).
22. J. Mack and J. R. Bolton, “Photochemistry of nitrite and nitrate in aqueous solution: a review,” J. Photochem. Photobiol. A 128, 1–13 (1999).
23. A. N. Terenin, Photochemistry of Dyes and Related Organic Compounds (Nauka, Moscow, 1967).
24. X. Li, S. Yuan, Y. Zhou, G. Liu, and D. Zhu, “Photodecomposition of organic phosphorus in aquatic solution under solar irradiation with nitrate: kinetics and influencing water parameters,” Environ. Prog. Sustainable Energy 36(2), 404–411 (2017).
25. I. S. Boltenkov, E. V. Kolobkova, and S. K. Evstropiev, “Synthesis and characterization of transparent photocatalytic ZnO-Sm2 O3 and ZnO-Er2 O3 coatings,” J. Photochem. Photobiol. A 367, 458–464 (2018).
26. L. C. Abbott, S. N. Batchelor, J. Oakes, J. R. Lindsay Smith, and J. N. Moore, “Spectroscopic studies of the intermolecular interactions of a bis-azo dye, Direct Blue 1, on di- and trimerization in aqueous solution and in cellulose,” J. Phys. Chem. B 108, 13735–13786 (2004).
27. V. Gvozdi ´c, V. Tomiši ´c, V. Butorac, and V. Simeon, “Association of nitrate ion with metal cations in aqueous solution: a UV-Vis spectrometric and factor-analytical study,” Croat. Chem. Acta 82(2), 553–559 (2009).
28. K. V. Anasuya, M. K. Veeraiah, S. Prasannakumar, P. Hemalatha, and M. Manju, “Synthesis and characterisation of poly(vinylpyrrolidon)-cobalt(II) complexes,” Indian J. Adv. Chem. Sci. 2, 12–15 (2014).
29. K. V. Anasuya, M. K. Veeraiah, P. Hemalatha, and M. Manju, “Synthesis and characterisation of poly (vinylpyrrolidone)–nickel (II) complexes,” IOSR J. Appl. Chem. 7(8), 61–66 (2014).
30. M. N. Inscoe, J. H. Gould, M. E. Corning, and W. R. Brode, “Relation between the absorption spectra and the chemical constitution of dyes: XXIX. Interaction of direct azo dyes in aqueous solution,” J. Res. Natl. Bur. Stand. 60(1), 65–83 (1958).