ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2019-86-02-18-22

УДК: 538.958; 54-78, 535.372

Spectral dependence of the photoluminescence of MEH-PPV/H2TPP nanocomposite and its change under gamma radiation

For Russian citation (Opticheskii Zhurnal):

Романов Н.М., Мусихин С.Ф., Захарова И.Б., Лахдеранта Э. Спектральная зависимость фотолюминесценции нанокомпозита MEH-PPV/H2TPP и её изменения под действием гамма-излучения // Оптический журнал. 2019. Т. 86. № 2. С. 18–22. http://doi.org/10.17586/1023-5086-2019-86-02-18-22

 

Romanov N.M., Musikhin S.F., Zakharova I.B., Lahderanta E. Spectral dependence of the photoluminescence of MEH-PPV/H2TPP nanocomposite and its change under gamma radiation  [in Russian] // Opticheskii Zhurnal. 2019. V. 86. № 2. P. 18–22. http://doi.org/10.17586/1023-5086-2019-86-02-18-22

For citation (Journal of Optical Technology):

N. M. Romanov, S. F. Musikhin, I. B. Zakharova, and E. Lahderanta, "Spectral dependence of the photoluminescence of MEH-PPV/H2TPP nanocomposite and its change under gamma radiation," Journal of Optical Technology. 86(2), 77-80 (2019). https://doi.org/10.1364/JOT.86.000077

Abstract:

The formation of an MEH-PPV/H2TPP nanocomposite, the energy transfer processes leading to the quenching of the photoluminescence of the polymer, and the effects of gamma radiation from a Cs137 source on the photoluminescence of an MEH-PPV/H2TPP nanocomposite are examined. The dose dependence of the photoluminescence intensity within the range of 0.5–12 kGy in H2O and the processes of photoluminescence recovery after irradiation were studied. The high stability of the radiating properties of the nanocomposite in comparison with the pure polymer is shown.

Keywords:

conductive polymer, porphyrins, nanocomposites, MEH-PPV, H2TPP, photoluminescence, gamma quanta

OCIS codes: 300.2530, 160.4236, 160.4890, 160.6000, 160.5470

References:

1. C. Xing, Q. Xu, H. Tang, L. Liu, and S. Wang, “Conjugated polymer/porphyrin complexes for efficient energy transfer and improving light-activated antibacterial activity,” J. Am. Chem. Soc. 131(36), 13117–13124 (2009).
2. A. Kumar, P. K. Bhatnagar, P. C. Mathur, K. Tada, and M. Onoda, “Improved electrical and optical properties of MEH-PPV light emitting diodes using Ba buffer layer and porphyrin,” Appl. Surf. Sci. 252, 3953–3955 (2006).
3. R. H. Lee and H. H. Lai, “Enhancing electroluminescence performance of MEH-PPV based polymer light emitting device via blending with organosoluble polyhedral oligomeric silsesquioxanes,” Eur. Polym. J. 43, 715–724 (2007).
4. S. H. Kwon, S. Y. Paik, and J. Y. Soo, “Electroluminescent properties of MEH-PPV light-emitting diodes fabricated on the flexible substrate,” Synth. Met. 130, 55–60 (2002).
5. A. N. Aleshin, I. P. Shcherbakov, F. S. Fedichkin, and P. E. Gusakov, “Electrical and optical properties of light-emitting field-effecttransistors based on MEH-PPV polymer composite films with ZnO nanoparticles,” Phys. Solid State 54(12), 2508–2513 (2012).
6. J. I. Lee, I. N. Kang, D. H. Hwang, and H. K. Shim, “Energy transfer in a blend of electroluminescent conjugated polymers,” Chem. Mater. 8, 1925–1929 (1996).
7. I. O. Ozel, T. Ozel, H. V. Demir, and D. Tunce, “Non-radiative resonance energy transfer in bipolymer nanoparticles of fluorescent conjugated polymers,” Opt. Express 18, 670–684 (2010).
8. K. M. Nimith, M. N. Satyanarayan, and G. Umesh, “Enhancement in fluorescence quantum yield of MEH-PPV:BT blends for polymer light emitting diode applications,” Opt. Mater. 80, 143–148 (2018).
9. H. Mizuno, S. Nasu, K. Kitamura, T. Aoki-Matsumoto, A. Fujita, Y. Fujita, and I. Hiromitsu, “Enhanced photoluminescence by excitation energy transfer in thin films consisting of fluorescent conjugated polymer and porphyrin,” Thin Solid Films 653, 136–142 (2018).
10. A. Facchetti, “Polymer donor–polymer acceptor (all-polymer) solar cells,” Mater. Today 16(4), 123–132 (2013).
11. Siddhartha, S. Aarya, K. Dev, S. K. Raghuvanshi, J. B. M. Krishna, and M. A. Wahab, “Effect of gamma radiation on the structural and optical properties of Polyethyleneterephthalate (PET) polymer,” Radiat. Phys. Chem. 81(4), 458–462 (2012).
12. N. M. Romanov, M. A. Elistratova, E. Lahderanta, and I. B. Zakharova, “Degradation of the photoluminescence of ZnTPP and ZnTPP–C60 thin films under gamma-irradiation,” Semicond. 52(8), 1061–1067 (2018).
13. N. M. Romanov, I. B. Zakharova, M. A. Elistratova, and E. Lahderanta, “The structure of ZnTPP, ZnTPP-C60 thin films and X-ray effect on their photoluminescence,” St. Petersburg State Polytech. Univ. J. Phys. Math. 11(2), 26–40 (2018).
14. N. M. Romanov and S. F. Musikhin, “Gamma-induced effect on the luminescence of nanocomposites of MEH-PPV conductive polymer with lead sulphide quantum dots,” St. Petersburg State Polytech.  Univ. J. Phys. Math. 11(2), 41–48 (2018).
15. X. L. Zhang, J. W. Jiang, Y. T. Liu, S. T. Lou, C. L. Gao, and Q. Y. Jin, “Identifying the assembly configuration and fluorescence spectra of nanoscale zinc-tetraphenylporphyrin aggregates with scanning tunneling microscopy,” Sci. Rep. 6, 22756 (2016).
16. A. Ruseckas, P. Wood, I. D. W. Samuel, G. R. Webster, P. L. Burn, and V. Sundström, “Ultrafast depolarization of the fluorescence in a conjugated polymer,” Phys. Rev. B 72(11), 115214 (2005).
17. M. M. L. Grage, P. W. Wood, A. Ruseckas, T. Pullerits, W. Mitchell, P. L. Burn, I. D. W. Samuel, and V. Sundström, “Conformational disorder and energy migration in MEH-PPV with partially broken conjugation,” J. Chem. Phys. 118(16), 7644–7650 (2003).
18. M. A. Elistratova, I. B. Zakharova, N. M. Romanov, V. Yu. Panevin, and E. O. Kvyatkovskii, “Photoluminescence spectra of thin films of ZnTPP–C60 and CuTPP–C60 molecular complexes,” Semicond. 50(9), 1191–1197 (2016).
19. M. M. El-Nahass, H. M. Abd El-Khalek, and A. M. Nawar, “Topological, morphological and optical properties of Gamma irradiated Ni (II) tetraphenyl porphyrin thin films,” Opt. Commun. 285(7), 1872–1881 (2012).
20. V. I. Fedman, “EPR and IR spectroscopy of free radicals and radical ions produced by radiation in solid systems,” in Applications of EPR in Radiation Research, A. Lund and M. K. Shiotani, eds. (Springer, 2003), pp. 151–187.