ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2019-86-02-23-28

УДК: 535.37

Laser fluorescence method for detecting oil pipeline leaks at a wavelength of 355  nm

For Russian citation (Opticheskii Zhurnal):

Федотов Ю.В., Белов М.Л., Кравцов Д.А., Городничев В.А. Лазерный флуоресцентный метод обнаружения утечек нефтепроводов на длине волны излучения 355 нм  // Оптический журнал. 2019. Т. 86. № 2. С. 23–28. http://doi.org/10.17586/1023-5086-2019-86-02-23-28

 

Fedotov Yu.V., Belov M.L., Kravtsov D.A., Gorodnichev V.A. Laser fluorescence method for detecting oil pipeline leaks at a wavelength of 355 nm  [in Russian] // Opticheskii Zhurnal. 2019. V. 86. № 2. P. 23–28. http://doi.org/10.17586/1023-5086-2019-86-02-23-28

For citation (Journal of Optical Technology):

Yu. V. Fedotov, M. L. Belov, D. A. Kravtsov, and V. A. Gorodnichev, "Laser fluorescence method for detecting oil pipeline leaks at a wavelength of 355  nm," Journal of Optical Technology. 86(2), 81-85 (2019). https://doi.org/10.1364/JOT.86.000081

Abstract:

The possibility of using the laser fluorescence method for detecting leakage of oil pipelines at a fluorescence excitation wavelength of 355 nm was analyzed. The results of experimental studies of the spectra of laser-induced fluorescence of clean crude oils and crude oils spilled on the soil as well as natural and anthropogenic elements of the site naturally located on the land are presented. It is shown that the fluorescent signal from oil spills on the Earth’s surface can be compared with that from vegetation and water bodies. However, the fluorescent signal from oil spills can be distinguished from that from vegetation and water bodies by analyzing the shape of the fluorescence spectra.

Keywords:

laser-induced fluorescence, fluorescence spectra, pipeline leaks, soil

Acknowledgements:

The authors are grateful to the staff of AO PERGAM-ENGINEERING for providing samples of commercial crude oils.

The research was supported by the Ministry of Education and Science of the Russian Federation (project No. 13.7377.2017/BCh).

OCIS codes: 300.2530, 260.2510, 280.3640

References:

1. A. Grec and C. Maior, “Earth oil extraction—major environmental pollution source,” Environ. Eng. Manage. J. 7(6), 763–768 (2008).
2. G. Biliavskiy and A. Golod, “Oil pollution of the Black Sea,” Proc. NAU 2, 91–95 (2012).
3. O. F. Adejoh, “Petroleum pipelines, spillages and the environment of the Niger Delta Region of Nigeria,” World Environ. 4(3), 93–100 (2014).
4. S. Sivokon and N. N. Andreev, “Laboratory assessment of the efficiency of corrosion inhibitors at oilfield pipelines of the West Siberia region I. Objective setting I,” Int. J. Corros. Scale Inhib. 1(1), 65–79 (2012).
5. J. Zhang, A. Hoffman, A. Kane, and J. Lewis, “Development of pipeline leak detection technologies,” in 10th International Pipeline Conference, Volume 1: Design and Construction; Environment; Pipeline Automation and Measurement, Calgary, Alberta, Canada (2014).
6. M. Sasano, “Marine observation lidar,” in Industrial Applications of Laser Remote Sensing, T. Fukuchi and T. Shiina, eds. (Bentham Science Publishers Ltd, 2012), pp. 89–98.
7. R. M. Measures, Laser Remote Sensing: Fundamentals and Applications (Krieger Publishing Company, Melbourne, 1992).
8. C. E. Brown, “Laser fluorosensors,” in Oil Spill Science and Technology, M. Fingas, ed. (Elsevier, 2011), pp. 171–184.

9. J. Vasilescu, L. Marmureanu, E. Carstea, and C. P. Cristscu, “Oil spills detection from fluorescence lidar measurements,” UPB Sci. Bull. Ser. A 72(2), 149–154 (2010).
10. Yu. V. Fedotov, O. A. Matrosova, M. L. Belov, and V. A. Gorodnichev, “The method for detection of oil pollution on the Earth’s surface based on the measurement of fluorescent radiation in three narrow spectral ranges,” Opt. Atmos. Okeana 26(3), 208–212 (2013).
11. J. Corbett and M. Woods, “UV laser radiation: skin hazards and skin protection controls,” in International Laser Safety Conference, Orlando, FL, 2013, paper 303.
12. “Laser safety: general safety requirements in the development and operation of laser products,” GOST 31581-2012 (Standardinform, Moscow, 2013).
13. S. Pal, A. Behrendt, M. Radlach, T. Schaberl, and V. Wulfmeyer, “Eye safe scanning aerosol lidar at 355 nm,” in Reviewed and Revised Papers of the 23rd International Laser Radar Conference (ILRC 2006), Nara, Japan, July 24–28, 2006, pp. 1–4.
14. D. Daumont, J. Brion, J. Charbonnier, and J. Malicet, “Ozone UV spectroscopy I: absorption cross-sections at room temperature,” J. Atmos. Chem. 15, 145–155 (1992).
15. M. H. Naseer, Z. M. Ayad, F. R. Fareed, and I. Y. Shahad, “Determination of absorption and fluorescence spectrum of Iraqi crude oil,” Am. J. Phys. Appl. 4(3), 78–83 (2016).
16. J. B. C. Bugden, C. W. Yeung, P. E. Kepkay, and K. Lee, “Application of ultraviolet fluorometry and excitation-emission matrix spectroscopy (EEMS) to fingerprint oil and chemically dispersed oil in seawater,” Mar. Pollut. Bull. 56, 677–685 (2008).
17. J. Steffens, E. Landulfo, L. C. Courrol, and R. Guardani, “Application of fluorescence to the study of crude petroleum,” J. Fluoresc. 21(3), 859–864 (2011).
18. A. B. Utkin, A. Lavrov, and R. Vilar, “Evaluation of oil spills by laser induced fluorescence spectra,” Proc. SPIE 7994, 799415 (2011).
19. A. Pashayev, B. Tagiyev, K. Allahverdiyev, A. Musayev, and I. Sadikhov, “LIDAR for remote sensing of contaminations on water and earth surface taking place during oil-gas production,” Proc. SPIE 9810, 981018 (2015).
20. R. Karpicz, A. Dementjev, Z. Kuprionis, S. Pakalnis, R. Westphal, R. Reuter, and V. Gulbinas, “Oil spill fluorosensing lidar for inclined onshore or shipboard operation,” Appl. Opt. 45(25), 6620–6625 (2006).
21. G. J. Ciuciu, D. Secrieru, G. Pavelescu, D. Savastru, D. Nicolae, C. Talianu, and A. Nemue, “Investigation of seawater pollution on Black Sea Romanian coast,” Proc. SPIE 6522, 65221D (2006).
22. W. W. Luedeker, K. P. Guenther, and H. G. Dahn, “Detection and mapping of oil contaminated soils by remote sensing of laser induced fluorescence,” Proc. SPIE 2504, 426–435 (1995).
23. J. Yang, W. Gong, S. Shi, L. Du, J. Sun, and S. Song, “The effective of different excitation wavelengths on the identification of plant species based on fluorescence lidar,” Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XLI-B1, 147–150 (2016).
24. Y. Saito, “Laser-induced fluorescence spectroscopy technique as a tool for field monitoring of physiological status of living plants,” Proc. SPIE 6604, 66041W (2007).
25. K. B. Mishra and R. Gopal, “Study of laser-induced fluorescence signatures from leaves of wheat seedlings growing under cadmium stress,” Gen. Appl. Plant Physiol. 31(3–4), 181–196 (2005).
26. M. Snels, R. Guarini, and M. Dell’Aglio, “First results obtained with a lidar fluorescence sensor system,” Proc. SPIE 4070, 100–107 (2000).