ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2019-86-02-29-35

Two-dimensional environment reconstruction based on absolute local deflection angle of laser scanning data

For Russian citation (Opticheskii Zhurnal):

Chunyong Wang, Jiancheng Lai, Bo Tang, Wei Yan, Yunjing Ji, and Zhenhua Li Two-dimensional environment reconstruction based on absolute local deflection angle of laser scanning data (Восстановление пространственного окружения при двумерном лазерном сканировании, использующее данные об абсолютной величине локального угла отклонения) [на англ. яз.] // Оптический журнал. 2019. Т. 86. № 2. С. 29–35. http://doi.org/10.17586/1023-5086-2019-86-02-29-35

 

Chunyong Wang, Jiancheng Lai, Bo Tang, Wei Yan, Yunjing Ji, and Zhenhua Li Two-dimensional environment reconstruction based on absolute local deflection angle of laser scanning data (Восстановление пространственного окружения при двумерном лазерном сканировании, использующее данные об абсолютной величине локального угла отклонения) [in English] // Opticheskii Zhurnal. 2019. V. 86. № 2. P. 29–35. http://doi.org/10.17586/1023-5086-2019-86-02-29-35

For citation (Journal of Optical Technology):

Chunyong Wang, Jiancheng Lai, Bo Tang, Wei Yan, Yunjing Ji, and Zhenhua Li, "Two-dimensional environment reconstruction based on the absolute local deflection angle of laser scanning data," Journal of Optical Technology. 86(2), 86-91 (2019). https://doi.org/10.1364/JOT.86.000086

Abstract:

Successive edge following (SEF) is extensively used to extract environment characteristics from two-dimensional laser scanning data given its simplicity. Conventional SEF compares the Euclidean distance between two adjacent points to either a fixed or an adaptive threshold. However, the segmentation accuracy is low and information loss occurs during processing of planes with large deflection angle with respect to the laser sensor, because the distance estimation is sensitive to this angle. Moreover, available SEF algorithms cannot suitably determine corners in the environment. To address these problems, we propose an extended SEF algorithm based on the absolute local deflection angle of laser scanning points. The proposed algorithm determines the local deflection angle between target and reference points, and an adaptive threshold is calculated based on the range precision of the laser sensor. Furthermore, corners are efficiently estimated and noise is mitigated by using three constraints. An experiment on two-dimensional environment reconstruction of an underground parking lot verifies the accuracy and capability of the proposed algorithm to reconstruct the lines and corners representing the environment.

Keywords:

successive edge following, laser sensor, laser scanning, feature extraction, corner detection

OCIS codes: 280.3420, 280.3400, 040.1880

References:

1. He X., Cai Z. Feature extraction from 2D laser range data for indoor navigation of aerial robot // IEEE CAC. 2013. P. 306–309.
2. Yin J., Carlone L., Rosa S., Bona B. Graph-based robust localization and mapping for autonomous mobile robotic navigation // IEEE ICMA. 2014. P. 1680–1685.
3. An S.-Y., Kang J.-G., Lee L.-K., Oh S .-Y. SLAM with salient line feature extraction in indoor environments // IEEE ICARCV. 2011. P. 410–416.
4. Nguyen V., Martinelli A., Tomatis N., Siegwart R. A comparison of line extraction algorithms using 2D laser rangefinder for indoor mobile robotics // IEEE/RSJ IROS. 2015. P. 1929–1934.
5. Nguyen V., Gächter S., Martinelli A., Tomatis N., Siegwart R. A comparison of line extraction algorithms using 2D range data for indoor mobile robotics // IEEE/RSJ IROS. 2005. P. 97–111.
6. Premebida C., Nunes U. Segmentation and geometric primitives extraction from 2D laser range data for mobile robot applications // Robotica. 2005. P. 17–25.
7. Rasheed U., Ahmed M., Ali S., Afridi J., Kunwar F. Generic vision based algorithm for driving space detection in diverse indoor and outdoor environments // IEEE ICMA. 2010. P. 1609–1614.
8. Victorino A.C., Rives P. Bayesian segmentation of laser range scan for indoor navigation // IEEE/RSJ IROS. 2004. P. 2731–2736.
9. Siadat A., Kaske A., Klausmann S., Dufaut M., Husson R. An optimized segmentation method for a 2D laser-scanner applied to mobile robot navigation // Proceedings of the 3rd IFAC Symposium on Intelligent Components and Instruments for Control Applications. 2007. P. 153–158.
10. Borges G.A., Aldon M.J. Line extraction in 2D range images for mobile robotics // Journal of Intelligent and Robotic Systems. 2004. P. 267–297.
11. Duda R.O., Hart P.E. Pattern classification and scene analysis. New York: John Wiley, 1973. P. 183–196.
12. Pavlidis T., Horowitz S.L. Segmentation of plane curves // IEEE Transactions on Computers. 1974. P. 860–870.
13. Bolles R.C., Fischler M.A. A RANSAC-based approach to model fitting and its application to finding cylinders in range data // Proceedings of the 7th International Joint Conference on Artificial Intelligence. 1981. P. 637–643.
14. Duda R.O., Hart P.E. Use of the Hough transformation to detect lines and curves in pictures // Communications of the ACM. 1972. P. 11–15.
15. Bu Y., Zhang H., Wang H., Liu R., Wang K. Two-dimensional laser feature extraction based on improved successive edge following // Appl. Opt. 2015. P. 4273–4279.