DOI: 10.17586/1023-5086-2019-86-02-62-67
УДК: 28.835.042.3
Onboard narrow-angle hyperspectrometer operating in the retargeting mode
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Виноградов А.Н., Егоров В.В., Калинин А.П., Родионов А.И., Родионов И.Д., Родионова И.П. Бортовой узкоугольный гиперспектрометр, работающий в режиме перенацеливания // Оптический журнал. 2019. Т. 86. № 2. С. 62–67. http://doi.org/10.17586/1023-5086-2019-86-02-62-67
Vinogradov A.N., Egorov V.V., Kalinin A.P., Rodionov A.I., Rodionov I.D., Rodionov I.P. Onboard narrow-angle hyperspectrometer operating in the retargeting mode [in Russian] // Opticheskii Zhurnal. 2019. V. 86. № 2. P. 62–67. http://doi.org/10.17586/1023-5086-2019-86-02-62-67
A. N. Vinogradov, V. V. Egorov, A. P. Kalinin, A. I. Rodionov, I. D. Rodionov, and I. P. Rodionov, "Onboard narrow-angle hyperspectrometer operating in the retargeting mode," Journal of Optical Technology. 86(2), 114-118 (2019). https://doi.org/10.1364/JOT.86.000114
A narrow-angle hyperspectrometer of the visible and near-infrared range (430–900 nm) intended both for detailed aviation monitoring of the Earth’s surface objects and for conducting ground-based research is described. Its angular field of view is four degrees. The sensor operation facilitates the preliminary detection of a small object with another sensor with a large angular field of view, followed by a narrow-angle hyperspectrometer pointing at this object, and its detailed analysis. Ground-based field tests confirmed the operability of the hyperspectrometer in terms of obtaining images of objects with high spatial resolution.
hyperspectrometer, sensor, spectral range, image, monitoring, resolution, pointing
Acknowledgements:The hyperspectrometer design part of this work was performed within the state order AAAA-A17-117112240026-5, the development of the pointing system functionality was performed within the state order AAAA-A18-118022790133-1, and the laboratory and field experiments were conducted within the state order AAAA-A17-117021310376-4.
OCIS codes: 280.0280, 110.4234
References:1. A. N. Vinogradov, V. V. Egorov, A. P. Kalinin, A. I. Rodionov, and I. D. Rodionov, “A line of aviation hyperspectrometers in the UV, visible, and near IR ranges,” J. Opt. Technol. 83(4), 237–243 (2016) [J. Opt. Technol. 83(4), 54–62 (2016)].
2. A. N. Vinogradov, V. V. Egorov, A. P. Kalinin, A. I. Rodionov, and I. D. Rodionov, “Hyperspectrometer for the 900–1700 nm nearinfrared region,” J. Opt. Technol. 84(10), 683–687 (2017) [J. Opt. Technol. 84(10), 42–47 (2017)].
3. A. P. Kalinin, A. G. Orlov, and I. D. Rodionov, “Aviation hyperspectrometer,” Vestn. MGTU im. N. E. Baumana Ser. Priborostr. 3, 11–24 (2006).
4. A. A. Belov, V. V. Egorov, A. P. Kalinin, N. A. Korovin, A. I. Rodionov, I. D. Rodionov, and S. N. Stepanov, “Ultraviolet monophotonic sensor ‘Corona’,” Autom. Remote Control 75(8), 1479–1483 (2014).
5. http://modtran.spectral.com/modtran_home.
6. P. D. Burns, “Slanted-edge MTF for digital camera and scanner analysis,” in Proceedings of the Society for Imaging Science and Technology PICS Conference (2000), pp. 135–138.