DOI: 10.17586/1023-5086-2019-86-02-68-73
УДК: 621.9.08:535.317.2
Use of coordinate measuring machines for the assembly of axisymmetric two-mirror objectives with aspherical mirrors
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Вензель В.И., Данилов М.Ф., Савельева А.А., Семёнов А.А. Применение координатно-измерительных машин для сборки осесимметричных двухзеркальных объективов с асферическими зеркалами // Оптический журнал. 2019. Т. 86. № 2. С. 68–73. http://doi.org/10.17586/1023-5086-2019-86-02-68-73
Venzel V.I., Danilov M.F., Savelieva A.A., Semenov A.A. Use of coordinate measuring machines for the assembly of axisymmetric two-mirror objectives with aspherical mirrors [in Russian] // Opticheskii Zhurnal. 2019. V. 86. № 2. P. 68–73. http://doi.org/10.17586/1023-5086-2019-86-02-68-73
V. I. Venzel’, M. F. Danilov, A. A. Savel’eva, and A. A. Semenov, "Use of coordinate measuring machines for the assembly of axisymmetric two-mirror objectives with aspherical mirrors," Journal of Optical Technology. 86(2), 119-123 (2019). https://doi.org/10.1364/JOT.86.000119
The error for the relative alignment of aspherical mirrors was analyzed using coordinate measuring machines for assembling Ritchey–Chrétien two-mirror objectives. It is shown that, in addition to the measurement error of linear and angular decentering of mirrors, the error in determining the position of the secondary and primary mirrors in the housing of the objective has a significant impact on the build quality. Requirements for lens design are formulated to ensure the required accuracy of assembly.
linear and angular decentering, geometric bases of the mirrors, axis of aspherical mirrors
OCIS codes: 220.0220, 080.1005
References:1. A. P. Semenov and V. E. Patrikeev, “A method for measuring the decentering of the optical axis of an aspherical surface and a spherometer for implementing the method,” Russian patent 2534815, IPC G01B 5/252 (Oct. 22, 2013).
2. V. G. Zubakov, “Measurement of the decentering value of optical parts with aspherical surfaces,” OMP 4, 43 (1972).
3. V. I. Venzel’, M. F. Danilov, O. A. Lebedev, A. A. Savel’eva, A. A. Semenov, and M. I. Sinelnikov, “Possibilities of the method of alignment of axisymmetric two-mirror objectives with aspherical mirrors according to geometric bases,” in Collection of Works of the XII International Conference Applied Optics (2016), vol. 1, pp. 23–27.
4. State Register of Measuring Instruments, “Three-dimensional measuring machines GLOBAL,” Registration No. 22428-05, August 21, 2005.
5. V. P. Suslin and A. V. Dzhunkovskiı˘, “Application of the regularization method for solving ill-conditioned problems of coordinate measurements,” Izmer. Tekh. 7, 23–26 (2009).
6. M. F. Danilov and A. A. Savel’eva, “Analysis of the initial data of unstable problems of coordinate measurements of geometric parameters of parts,” Izmer. Tekh. 6, 41–45 (2018).
7. GOST R 8.736-2011, “Direct and multiple measurements—Methods of processing measurement results—The main provisions,” 2013.
8. M. F. Danilov, A. P. Ivanova, and A. A. Savel’eva, “Estimation of the error of coordinate measurements of geometric parameters of parts based on a priori information,” Izmer. Tekh. 3, 23–27 (2018).