DOI: 10.17586/1023-5086-2019-86-02-74-78
УДК: 535.37, 544.778.4
Erbium luminescence in (Y, Er, Yb)3Al5O12 powders
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Хорошко Л.С., Гапоненко Н.В., Руденко М.В., Сукалин К.С., Мудрый А.В., Радюш Ю.В. Люминесценция эрбия в порошках (Y, Er, Yb)3Al5O12 // Оптический журнал. 2019. Т. 86. № 2. С. 74–78. http://doi.org/10.17586/1023-5086-2019-86-02-74-78
Khoroshko L.S., Gaponenko N.V., Rudenko M.V., Sukalin K.S., Mudriy A.V., Radyush Yu.V. Erbium luminescence in (Y, Er, Yb)3Al5O12 powders [in Russian] // Opticheskii Zhurnal. 2019. V. 86. № 2. P. 74–78. http://doi.org/10.17586/1023-5086-2019-86-02-74-78
L. S. Khoroshko, N. V. Gaponenko, M. V. Rudenko, K. S. Sukalin, A. V. Mudryĭ, and Yu. V. Radyush, "Erbium luminescence in (Y, Er, Yb)3Al5O12 powders," Journal of Optical Technology. 86(2), 124-128 (2019). https://doi.org/10.1364/JOT.86.000124
In this work, the Stokes and anti-Stokes luminescence (upconversion) of erbium in powders of yttrium-aluminum garnet with various concentrations of erbium, as well as co-doped with erbium and ytterbium, synthesized by the sol-gel method using multistage thermal processing, was investigated. It was established that the phase composition of the resulting powders corresponds to the crystal structure of garnet. For all powders, high-intensity Stokes luminescence with a maximum at 1.53 μm was observed due to the I13/24→I15/24 electronic transition, and anti-Stokes luminescence was observed with the most intense band in the region of 0.65–0.69 μm, associated with the F9/24→I15/24 transition of Er3+ ions. The highest intensity of the Stokes luminescence is observed for the maximum substitution of yttrium by erbium considered here, which corresponds to the Yb1.5Er1.5Al5O12 stoichiometry. The highest intensity of the anti-Stokes luminescence is for the lowest erbium concentration and for codoping with ytterbium with Y2.71Er0.29Al5O12 and Y2Er0.5Yb0.5Al5O12 stoichiometries, respectively.
luminescence, erbium, upconversion, yttrium-aluminum garnet, sol-gel method
Acknowledgements:This work was supported by the Belarusian-Indian grant of the State Committee for Science and Technology (contract with BRFFI No. F17INDG-001) and the youth grant BRFFI-MinObr (contract No. F16MV-015).
OCIS codes: 160.2540, 190.7220, 260.3060, 260.3800
References:1. P. G. Kik and A. Polman, “Cooperative upconversion as the gain-limiting factor in Er doped miniature Al 2 O 3 optical waveguide amplifiers,” J. Appl. Phys. 93(9), 5008–5012 (2003).
2. N. V. Gaponenko, G. K. Malyarevich, D. A. Tsyrkunou, E. A. Stepanova, A. V. Mudryi, O. B. Gusev, E. I. Terukov, M. V. Stepikhova, L. V. Krasilnikova, and Yu. N. Drozdov, “Optical properties of erbium-doped xerogels embedded in porous anodic alumina,” Opt. Mater. 28, 688–692 (2006).
3. B. Zhou, B. Shi, D. Jin, and X. Liu, “Controlling upconversion nanocrystals for emerging applications,” Nature Nanotechnol. 10, 924–936 (2015).
4. A. Shalav, B. S. Richards, and M. A. Green, “Luminescent layers for enhanced silicon solar cell performance: upconversion,” Sol. Energy Mater. Sol. Cells. 91(9), 829–842 (2007).
5. M. A. Hernández-Rodríguez, M. H. Imanieh, L. L. Martín, and I. R. Martín, “Experimental enhancement of the photocurrent in a solar cellusing upconversion process in fluoroindate glasses exciting at 1480 nm,” Sol. Energy Mater. Sol. Cells 116, 171–175 (2013).
6. Y. Badr, I. K. Battisha, A. Salah, and M. A. Salem, “Upconversion luminescence application in Er 3+:TiO 2 thin film prepared by dip coating sol-gel route,” Indian J. Pure Appl. Phys. 46, 706–711 (2008).
7. A. Bahtat, M. Bouazaoui, M. Bahtat, C. Garapon, B. Jacquier, and J. Mugnier, “Upconversion fluorescence spectroscopy in Er 3+ :TiO2 planar waveguides prepared by a sol-gel process,” J. Non-Cryst. Solids 202, 16–22 (1996).
8. Y. Huang, H. J. Seo, Y. Yang, and J. Zhang, “Visible upconversion luminescence in Er 3+-doped PbWO 4 single crystals,” Mater. Chem. Phys. 91, 424–430 (2005).
9. F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev. 104(1), 139–174 (2004).
10. E. Garskaite, M. Lindgren, M.-A. Einarsrud, and T. Grande, “Luminescent properties of rare earth (Er, Yb) doped yttrium aluminium garnet thin films and bulk samples synthesised by an aqueous sol-gel technique,” J. Eur. Ceram. Soc. 30, 1707–1715 (2010).
11. G. K. Maliarevich, N. V. Gaponenko, A. V. Mudryi, E. A. Stepanova, Y. N. Drozdov, and M. V. Stepikhova, “Terbium photoluminescence in yttrium aluminum garnet xerogels,” Semiconductors 43(2), 158–161 (2009).
12. L. S. Khoroshko, M. V. Rudenko, A. V. Krivosheev, M. V. Meledina, N. V. Gaponenko, T. F. Raı˘chenok, and S. A. Tikhomirov, “Sol-gel synthesis and luminescence of film structures containing ytterbium-doped yttrium-aluminum garnet,” Dokl. BGUIR 104(2), 58–63 (2017).