DOI: 10.17586/1023-5086-2019-86-03-13-21
УДК: 621.3
Random signal generation and synchronization in lab-scale measurement device independent-quantum key distribution systems
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Salwa M. Salih and Shelan K. Tawfeeq Random signal generation and synchronization in lab-scale measurement device independent-quantum key distribution systems (Генерация случайного сигнала и синхронизация в лабораторных системах квантовой рассылки ключа, не зависимых от измерительного устройства) [на англ. яз.] // Оптический журнал. 2019. Т. 86. № 3. С. 13–21. http://doi.org/10.17586/1023-5086-2019-86-03-13-21
Salwa M. Salih and Shelan K. Tawfeeq Random signal generation and synchronization in lab-scale measurement device independent-quantum key distribution systems (Генерация случайного сигнала и синхронизация в лабораторных системах квантовой рассылки ключа, не зависимых от измерительного устройства) [in English] // Opticheskii Zhurnal. 2019. V. 86. № 3. P. 13–21. http://doi.org/10.17586/1023-5086-2019-86-03-13-21
Salwa M. Salih and Shelan K. Tawfeeq, "Random signal generation and synchronization in lab-scale measurement device independent–quantum key distribution systems," Journal of Optical Technology. 86(3), 137-143 (2019). https://doi.org/10.1364/JOT.86.000137
In this paper a random transistor-transistor logic signal generator and a synchronization circuit are designed and implemented in lab-scale measurement device independent — quantum key distribution systems. The random operation of the weak coherent sources and system's synchronization signals were tested by time to digital convertor.
time to digital convertor, coincidence window, photon arrival time
OCIS codes: 270.5568
References:1. Pljonkin A., Rumyantsev K., Singh P.K. Synchronization in quantum key distribution systems // Cryptography. 2017. V. 1. № 18. Р. 1–9.
2. Chiangga S., Zarda P., Jennewein T., Weinfurter H. Towards practical quantum cryptography // Appl. Phys. B. 1999. V. 69. P. 389–393.
3. Tang Z., Liao Z., Xu F., Qi B., Qian L., and Lo H.-K. Experimental demonstration of polarization encoding measurement device-independent quantum key distribution // Phys. Rev. Lett. 2014. V. 112. Р. 1–6.
4. Sajeed S., Huang A., Sun S., Xu F., Makarov V., Curty M. Insecurity of detector-device-independent quantum key distribution // Phys. Rev. Lett. 2016. V. 117. Р. 1–6.
5. Liu Y., Chen T.-Y., Wang L.-J., Liang H., Shentu G.-L., Wang J., Cui K., Yin H.-L., Liu N.-L., Li L., Ma X., Pelc J.S., Fejer M.M., Peng C.-Z., Zhang Q., and Pan J.-W. Experimental measurement-device-independent quantum key distribution // Phys. Rev. Lett. 2013. V. 111. Р. 1–5.
6. Li H.-W., Yin Z.-Q., Wang S., Qian Y.-J., Chen W., Guo G.-C., and Han Z.-F. Randomness determines practical security of BB84 quantum key distribution // Nature / Scientific Reports, 2015. 8 р.
7. Rosenberg D., Harrington J.W., Rice P.R., Hiskett P.A., Peterson C.G., Hughes R.J., Lita A.E., Nam S.W., and Nordholt J.E. Long-distance decoy-state quantum key distribution in optical fiber // Phys. Rev. Lett. 2007. V. 98. Р. 1–4.
8. Chapuran T.E., Toliver P., Peters N.A., Jackel J., Goodman M.S., Runser R.J., McNown S.R., Dallmann N., Hughes R.J., McCabe K.P., Nordholt J.E., Peterson C.G., Tyagi K.T., Mercer L., and Dardy H. Optical networking for quantum key distribution and quantum communications // New J. Phys. 2009. V. 11. Р. 1–19.
9. Tang Y.-L., Yin H.-L., Chen S.-J., Liu Y., Zhang W.-J., Jiang X., Zhang L., Wang J., You L.-X., Guan J.-Y., Yang D.-X., Wang Z., Liang H., Zhang Z., Zhou N., Ma X., Chen T.-Y., Zhang Q., and Pan1 J.-W. Measurement-device-independent quantum key distribution over 200 km // Phys. Rev. Lett. 2014. V. 113. Р. 1–5.
10. Hasan R.S., Tawfeeq S.K., Mohammed N.Q., Khaleel A.I. A true random number generator based on the photon arrival time registered in a coincidence window between two single-photon counting modules // Chinese J. Phys. 2018. V. 56. P. 385–391.