DOI: 10.17586/1023-5086-2019-86-03-22-31
УДК: 536.49, 519.673
Transformation dynamics of a carbon particle on a quartz substrate in a laser field
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Адаменков Ю.А., Буйко С.А., Кудряшов Е.А., Мазанов В.А., Макейкин Е.Н., Маркин С.В., Мелехин А.С., Рогачев В.Г., Сиренко А.В., Тимаев Д.С. Динамика превращения частицы углерода на кварцевой подложке в лазерном поле // Оптический журнал. 2019. Т. 86. № 3. С. 22–31. http://doi.org/10.17586/1023-5086-2019-86-03-22-31
Adamenkov Yu.A., Buyko S.A., Kudryashov E.A., Mazanov V.A., Makeykin E.N., Markin S.V., Melekhin A.S., Rogachev V.G., Sirenko A.V., Timaev D.S. Transformation dynamics of a carbon particle on a quartz substrate in a laser field [in Russian] // Opticheskii Zhurnal. 2019. V. 86. № 3. P. 22–31. http://doi.org/10.17586/1023-5086-2019-86-03-22-31
Yu. A. Adamenkov, S. A. Buĭko, E. A. Kudryashov, V. A. Mazanov, E. N. Makeĭkin, S. V. Markin, A. S. Melekhin, V. G. Rogachev, A. V. Sirenko, and D. S. Timaev, "Transformation dynamics of a carbon particle on a quartz substrate in a laser field," Journal of Optical Technology. 86(3), 144-152 (2019). https://doi.org/10.1364/JOT.86.000144
This paper presents the results of computational–experimental studies of the laser heating of carbon (graphite) particles having a size of about 500 μm, located on a quartz substrate in inert nitrogen and argon media in the intensity range of laser radiation from 0.35 to 3.5 kW/cm2. The temperature of the particles is experimentally measured in the field where the laser radiation acts. It is shown that heating the carbon particles damages the surface of the quartz substrate in virtually the entire zone of the laser spot, with the formation of a crater whose center coincides with the center of the particle. The LOGOS software package, developed at the Russian Federal Nuclear Center—All-Russia Scientific Research Institute of Experimental Physics, is used to numerically model the process by which the laser radiation interacts with the carbon (graphite) particle lying on the quartz substrate. The results indicate that a chemical reaction occurs between the carbon and the quartz with possible formation of a layer of silicon carbide on the substrate surface.
laser radiation, radiation absorption, heating, carbon particle, substrate surface damage
OCIS codes: 140.6810, 140.3450, 160.4670
References:1. V. I. Bukatyı˘, I. A. Sutorikhin, and A. M. Shaı˘duk, “Investigation of the combustion dynamics of a carbon particle in the radiation field of a CO 2 laser,” Fiz. Goreniya Vzryva 19, 73–78 (1983).
2. V. I. Bukatyı˘, A. M. Sagalakov, and A. A. Tel’nikhin, “The combustion of carbon particles in a strong optical field,” Fiz. Goreniya Vzryva 15, 46–50 (1979).
3. V. I. Bukatyı˘, I. A. Sutorikhin, and A. M. Shaduk, “The surface temperature of carbon particles in a powerful laser-radiation field,” Fiz. Goreniya Vzryva 24(5), 1004–1007 (1986).
4. V. I. Bukatyı˘, E. P. Zhdanov, and A. M. Shaı˘duk, “The combustion of aerosol particles in an electromagnetic radiation field,” Fiz. Goreniya Vzryva 18(3), 56–59 (1982).
5. V. V. Kalinchak, S. G. Orlovskaya, and O. N. Gulevataya, “High-temperature thermal–mass exchange of a carbon particle heated by laser radiation taking into account the Stefan flux on its surface,” in The Physics of Aerodispersed Systems (Izd. Astroprint, Odessa, 2001), pp. 158–168.
6. A. Brown, A. Oglosa, and L. Taylor, “Continuous-wave laser damage and conditioning of particle-contaminated optics,” Appl. Opt. 54(16), 5216–5222 (2015).
7. A. Brown, A. Oglosa, and K. Olson, “Continuous-wave laser particle conditioning: thresholds and time scales,” Opt. Laser Technol. 89, 27–30 (2017).
8. V. A. Mazanov, E. N. Makeı˘kin, and S. A. Rusin, et al., “Multichannel spectral–pyrometric technique for determining the surface brightness temperature of bodies,” in Fifth All-Russia School for Students, Graduate Students, Young Scientists, and Specialists in Laser Physics and Laser Technologies (Izd. RFYaTs-VNIIÉF, Sarov, 2011), pp. 211–218.
9. S. V. Markin, A. A. Adamenkov, Yu. A. Adamenkov, V. A. Volkov, B. A. Vyskubenko, S. P. Ilyin, V. V. Koksharov, Yu. V. Kolobyanin, V. A. Mazanov, E. N. Makeı˘kin, S. A. Rusin, A. V. Sirenko, and B. P. Yakutov, “The interaction of XKIL radiation with carbon materials,” in Fifth All-Russia School for Students, Graduate Students, Young Scientists, and Specialists in Laser Physics and Laser Technologies (Izd. RFYaTs-VNIIÉF, Sarov, 2011), pp. 218–226.
10. D. Ya. Svet, Objective Methods of High-Temperature Pyrometry for a Continuous Emission Spectrum (Nauka, Moscow, 1968).
11. M. A. Bramson, Infrared Emission of Heated Solids (Nauka, Moscow, 1964).
12. N. Klinger, E. L. Strauss, and K. L. Komarek, “Reactions between silica and graphite,” J. Am. Ceram. Soc. 49, 369–375 (1966).
13. R. L. Glinka, General Chemistry (Khimiya, Moscow, 1976).
14. A. N. Zaidel’, V. K. Prokof’ev, and S. M. Raiskiı˘, Tables of Spectrum Lines (Veb Verlag Technik, Berlin, 1961; Nauka, Moscow, 1977).
15. I. S. Grigor’eva and E. Z. Meı˘likhova, Physical Quantities, S. S. Kutateladze, ed. (Énergoizdat, Moscow, 1991).
16. LOGOS Software Package, version 5, License No. 2017612306 on 2/20/2017.
17. S. S. Kutateladze and V. M. Borishanskiı˘, Heat-Transfer Handbook (Gosudarstvennoe Énergeticheskoe Izd., Moscow, 1958), pp. 320–340.
18. S. M. Kahar, C. H. Voon, and C. C. Lee, “Synthesis of SiC nano-whiskers from graphite and silica by microwave heating,” Mater. Sci.-Pol. 34(4), 770–779 (2016).
19. C. Vix-Guterl, I. Alix, and P. Ehrburger, “Synthesis of tubular silicon carbide (SiC) from a carbon-silica material by using a reactive replica technique mechanism of formation of SiC,” Acta Mater. 52, 1639–1651 (2004).
20. A. N. Magunov, Spectral Pyrometry (Moscow, 2009).
21. R. A. Siegel and J. R. Howell, Thermal Radiation Heat Transfer (McGraw-Hill, 1980; Mir, Moscow, 1975).