DOI: 10.17586/1023-5086-2019-86-03-32-39
УДК: 681.785.552.2
Analysis of versions of the optical layout of a high-aperture imaging spectrograph based on a convex holographic diffraction grating
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Мельников А.Н., Муслимов Э.Р. Анализ вариантов оптической схемы светосильного изображающего спектрографа, построенного на основе выпуклой голограммной дифракционной решетки // Оптический журнал. 2019. Т. 86. № 3. С. 32–39. http://doi.org/10.17586/1023-5086-2019-86-03-32-39
Melnikov A.N., Muslimov E.R. Analysis of versions of the optical layout of a high-aperture imaging spectrograph based on a convex holographic diffraction grating [in Russian] // Opticheskii Zhurnal. 2019. V. 86. № 3. P. 32–39. http://doi.org/10.17586/1023-5086-2019-86-03-32-39
A. N. Melnikov and E. R. Muslimov, "Analysis of versions of the optical layout of a high-aperture imaging spectrograph based on a convex holographic diffraction grating," Journal of Optical Technology. 86(3), 153-159 (2019). https://doi.org/10.1364/JOT.86.000153
This paper discusses the possibility of constructing an imaging spectrograph using an aberration-corrected holographic diffraction grating deposited on a convex surface. A projection objective is used as the starting point for designing such an optical layout. It is shown that, when the simplest triplet-type objective is used, a spectrograph layout for the 400–700-nm visible range with a relative aperture of up to 1∶2.3 can be constructed that provides a spectral resolution of 2.9–7.7 nm when operated with a slit 16 mm long. A version is also considered of a spectrograph design with matching of the spectral and imaging channels, based on a six-lens projection objective.
holographic diffraction gratings, convex diffraction gratings, imaging spectrograph, spectral resolution
OCIS codes: 300.6190, 230.1950, 090.2890, 110.0110
References:1. M. Khasan, “Optical layouts of compact spectrographs based on concave reflective holographic diffraction gratings for studyingnanomaterials,” Author’s abstract of dissertation for candidate of technical sciences, Kazan’ (2012).
2. L. Xu, Y. Ji, W. Shen, and M. Tang, “Optical design of wide-waveband compact imaging spectrometer with fast speed,” Proc. SPIE 8200, 82000C (2011).
3. M. W. Kudenov, J. Craven-Jones, R. Aumiller, C. Vandervlugt, and E. L. Dereniak, “Faceted grating prism for a computed tomographic imaging spectrometer,” Opt. Eng. 51(4), 044002 (2012).
4. D. A. Peyrot, C. Lefort, M. Steffenhagen, T. Mansuryan, G. Ducourthial, D. Abi-Haidar, N. Sandeau, C. Vever-Bizet, S. G. Kruglik, L. Thiberville, F. Louradour, and G. Bourg-Heckly, “Development of a nonlinear fiber-optic spectrometer for human lung tissue exploration,” Biomedical Opt. Exp. 3(5), 840 (2012).
5. A. Kh. Gilmutdinov, A. V. Voloshin, and K. Yu. Nagulin, “Spatially resolved atomic absorption spectrometry,” Russian Chem. Rev. 75(4), 303–315 (2006).
6. O. Pawluczyk and R. Pawluczyk, “Applications of multichannel imaging spectrometer,” Proc. SPIE 5578, 227–238 (2004).
7. Imaging spectrometer IHR550, HORIBA Scientific, http://www.horiba.com/us/en/scientific/products/optical-spectroscopy/spectrometers-monochromators/ihr/ihr550-imaging-spectrometer-200/.
8. Holographic imaging spectrograph Holospec f/1.8, Kaiser Optical Systems, Inc., https://www.kosi.com/na_en/products/raman-spectroscopy/raman-spectroscopy-product-overview.php.
9. E. R. Muslimov and R. R. Akhmetgaleeva, “Imaging spectrometer with a grism in a convergent pencil of rays,” in Tenth International Conference on Optical Technologies in Telecommunications, Ufa, Russia, November 20–22, 2012 (UGATU, 2012), pp. 67–69.
10. E. R. Muslimov, A. R. Nasyrov, and A. F. Skochilov, “Diffraction gratings as part of the basic module of a hyperspectrometer with high spatial resolution for the near-IR,” in Holography: Science and Practice: Collection of Abstracts of the Twelfth International Conference HoloExpo–2015, Kazan’, Russia, 12–15 October 2015 (Izd. KNITU-KAI, 2015), pp. 360–362.
11. C. Palmer and E. Loewen, Diffraction Grating Handbook (Newport Corporation, Rochester, N.Y., 2005).
12. E. A. Sokolova, “New-generation diffraction gratings,” J. Opt. Technol. 68(8), 584–589 (2001).
13. F. Koch, D. Lehr, O. Schönbrodt, T. Glaser, R. Fechner, and F. Frost, “Manufacturing of highly-dispersive, high-efficiency transmission gratings by laser interference lithography and dry etching,” Microelectron. Eng. 191, 60–65 (2018).
14. P. A. Blanche, P. Gailly, S. Habraken, P. Lemaire, and C. Jamar, “Volume phase holographic gratings: large size and high diffraction efficiency,” Opt. Eng. 43(11), 2603–2612 (2004).
15. F.-K. Bruder, T. Fäcke, and T. Rölle, “The chemistry and physics of Bayfol ® HX film holographic photopolymer,” Polymers 9(10), 472 (2017).
16. M. M. Nazmeev and N. K. Pavlycheva, “New generation spectrographs,” Opt. Eng. 33(8), 2777–2782 (1994).
17. V. I. Zavarzin and Yu. S. Mitrofanova, “System solutions for prospective hyperspectral equipment,” J. Opt. Technol. 84(4), 226–230 (2017).
18. C. Palmer, Diffraction Grating Handbook (Newport Corporation, New York, 2014).
19. 6.25 mm Dia. x 50 mm FL, VIS-NIR Coated, Achromatic Lens, Edmund Optics, https://www.edmundoptics.com/p/625mm-dia-x-50mm-fl-vis-nir-coated-achromatic-lens/9667/.
20. G. H. Aklin, F. E. Altman, and L. Walter, “Photographic objective of the Cooke triplet type,” U.S. Patent No. 2,503,751 (1950).
21. G. J. Hill, M. J. Wolf, J. R. Tufts, and E. C. Smith, “Volume phase holographic grisms for infrared and optical spectrographs,” Proc. SPIE 4842, 1 (2003).
22. A. G. Orlov, V. V. Egorov, A. P. Kalinin, and I. D. Rodionov, “Aviation hyperspectrometer: architecture and technique for designing the elements,” in Fifth All-Russia Annual Open Conference on Modern Problems of Remote Probing of Earth and Space (IKI RAN, Moscow, 2007), pp. 280–287.
23. N. Zubko, N. Baba, H. Shibuya, and N. Murakami, “Method to reconstruct exoplanetary spectrum,” Opt. Lett. 34(16), 2432–2434 (2009).
24. E. R. Muslimov, “A built-in spectrograph with transmission concave holographic grating,” in Proceedings of the Third EOS Conference on Manufacturing of Optical Components (EOSMOC), Munich, May 13–15, 2013.
25. R. L. Thompson and J. Tesar, “Double-gauss type of lens for compact camera,” WO application for invention No. 2005088377 (2005).