DOI: 10.17586/1023-5086-2019-86-03-56-60
УДК: 535.42
Regulation of the sensitivity of measurements in holographic interferometry of dynamic periodic structures
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Ляликов А.М., Авласевич Н.Т. Регулирование чувствительности измерений в голографической интерферометрии динамических периодических структур // Оптический журнал. 2019. Т. 86. № 3. С. 56–60. http://doi.org/10.17586/1023-5086-2019-86-03-56-60
Lyalikov A.M., Avlasevich N.T. Regulation of the sensitivity of measurements in holographic interferometry of dynamic periodic structures [in Russian] // Opticheskii Zhurnal. 2019. V. 86. № 3. P. 56–60. http://doi.org/10.17586/1023-5086-2019-86-03-56-60
A. M. Lyalikov and N. T. Avlasevich, "Regulation of the sensitivity of measurements in holographic interferometry of dynamic periodic structures," Journal of Optical Technology. 86(3), 173-176 (2019). https://doi.org/10.1364/JOT.86.000173
This paper discusses the features of the recording of a hologram of a periodic structure that make it possible when implementing a method of either real-time or double-exposure holographic interferometry to adjust the measurement sensitivity when investigating the temporal behavior of the periodic structure of an object. Experimental test results of the real-time holographic interferometry method, devised while studying the dynamics of two-dimensional periodic structures in time, are presented.
holographic interferometry, sensitivity of measurements, dynamic periodic structure, spectral component, interference pattern
OCIS codes: 090.2880
References:1. I. A. Ustinova, A. A. Nikitin, and A. B. Ustinov, “Dynamic magnon crystal based on a ferrite-ferroelectric layered structure,” Zh. Teor. Fiz. 86(3), 155–158 (2016).
2. O. S. Kabanova, E. A. Mel’nikova, I. I. Olenskaya, and A. L. Tolstick, “Electrically controlled waveguide liquid-crystal elements,” Tech. Phys. Lett. 40(7), 598–600 (2014) [Pis’ma Zh. Eksp. Teor. Fiz. 40(14), 30–35 (2014)].
3. A. V. Golenishchev-Kutuzov, V. A. Golenishchev-Kutuzov, R. I. Kalimullin, and A. A. Potapov, “Tunable acoustic resonator based on a periodic domain structure,” Tech. Phys. Lett. 38(9), 825–827 (2012) [Pis’ma Zh. Eksp. Teor. Fiz. 38(18), 1–6 (2012)].
4. A. M. Lyalikov and M. Yu. Serenko, “Flaw detection in periodic structures by using systems designed for optical diagnostics of phase objects,” J. Opt. Technol. 67(6), 596–599 (2000) [Opt. Zh. 67(6), 111–114 (2000)].
5. N. A. Groshenko, O. S. Makalish, and A. V. Volyar, “Optical vortices in the scatter field of magnetic domain holograms,” Zh. Teor. Fiz. 68(12), 54–58 (1998).
6. N. T. Avlasevich and A. M. Lyalikov, “Visualization of defects of a separate component of a composite diffractive optical element,” Probl. Fiz. Mat. Mekh. 3, 7–12 (2017).
7. A. K. Beketova, A. F. Belozerov, and A. N. Berezkin, Holographic Interferometry of Phase Objects (Nauka, Leningrad, 1979).
8. Ch. West, Holographic Interferometry (Mir, Moscow, 1982).
9. A. M. Lyalikov, “Visualization of the surface shape of objects with a periodic structure,” J. Opt. Technol. 61(5), 376–378 (1994) [Opt. Zh. 5, 23–25 (1994)].
10. A. M. Lyalikov, “Visualization of macroscopic surface defects of an object with a periodic structure,” J. Opt. Technol. 62(1), 21–23 (1995) [Opt. Zh. 1, 28–31 (1995)].
11. S. T. Bobrov, G. I. Greı˘sukh, and Y. G. Turkevich, Optics of Diffraction Elements and Systems (Mashinostroenie, Leningrad, 1986).
12. R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic Press, New York, 1971).
13. U. Schnars and W. Jueptner, Digital Holography (Springer Verlag, Berlin, 2004).
14. M. E. Gusev, A. A. Voronin, V. S. Gurevich, H. M. Isaev, I. V. Alekseenko, and V. I. Redkorechev, “Methods of digital holographic interferometry and their application for the measurement of nano-movements,” Nanosist. Fiz. Khim. Mat. 2(1), 23–39 (2011).
15. V. A. Barachevsky, “The current status of the development of light-sensitive media for holography (a review),” Opt. Spectrosc. 124(3), 373–401 (2018) [Opt. Spektrosk. 124(3), 371–399 (2018)].