DOI: 10.17586/1023-5086-2019-86-03-72-77
УДК: 681.786.3
Optical system of a turning-angle sensor based on a BR-180° prism and a photoelectric autocollimator
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Колосов М.П., Гебгарт А.Я. Оптическая система датчика угла поворота на основе призмы БР-180° и фотоэлектрического автоколлиматора // Оптический журнал. 2019. Т. 86. № 3. С. 72–77. http://doi.org/10.17586/1023-5086-2019-86-03-72-77
Kolosov M.P., Gebgart A.Ya. Optical system of a turning-angle sensor based on a BR-180° prism and a photoelectric autocollimator [in Russian] // Opticheskii Zhurnal. 2019. V. 86. № 3. P. 72–77. http://doi.org/10.17586/1023-5086-2019-86-03-72-77
M. P. Kolosov and A. Ya. Gebgart, "Optical system of a turning-angle sensor based on a BR-180° prism and a photoelectric autocollimator," Journal of Optical Technology. 86(3), 187-191 (2019). https://doi.org/10.1364/JOT.86.000187
The optical system of a new type of high-precision compact turning-angle sensor based on a BR-180° prism and a photoelectric autocollimator is considered. Measurement errors of the sensor that occur owing to a disturbance in its geometrical layout were estimated. How this optical system can be used to create a sensor for determining the triaxial orientation of one object relative to another is demonstrated.
turning-angle sensor, matrix radiation detector, objective, image, measurement errors, triaxial orientation
OCIS codes: 120. 4570, 220. 4830
References:1. Yu. E. Dukarevich and M. Yu. Dukarevich, “Absolute angle transducer (variants),” Russian patent 2419067 (2009).
2. M. P. Kolosov and V. I. Fedoseev, “Analysis of the optical system of a turning-angle sensor based on a collimator with an annular field,” J. Opt. Technol. 81(2), 90–94 (2014) [Opt. Zh. 82(2), 49–54 (2014)].
3. A. N. Korolev, A. Ya. Lukin, and G. S. Polishchuk, “New concept of angular measurement. Model and experimental studies,” J. Opt. Technol. 79(6), 352–356 (2012) [Opt. Zh. 79(6), 52–58 (2012)] .
4. M. P. Kolosov and A. Ya. Gebgart, “Turning-angle sensor,” Russian patent 2569072 (2013).
5. M. P. Kolosov, V. I. Fedoseev, and A. Ya. Gebgart, “Comparative evaluation of three modern turning-angle sensors,” J. Opt. Technol. 84(11), 743–747 (2017) [Opt. Zh. 84(12), 34–38 (2017)].
6. M. P. Kolosov and V. I. Fedoseev, Optoelectronic Devices for Spacecraft Orientation and Navigation (Logos, Moscow, 2007).
7. Yu. E. Dukarevich and M. Yu. Dukarevich, “Method for measuring a plane angle and the device for its implementation,” Russian patent 2451903 (2010).
8. A. Yu. Karelin, “Enhancing the accuracy of wide-field astronomical measurement devices with CCD arrays,” J. Opt. Technol. 65(8), 640–644 (1998) [Opt. Zh. 65(8), 46–50 (1998)].
9. M. P. Kolosov and V. I. Fedoseev, “Analysis of the optical system of a test bench for certifying a nonmisadjustable turning-angle sensor,” J. Opt. Technol. 83(8), 481–485 (2016) [Opt. Zh. 83(8), 41–47 (2016)].
10. S. M. Latyev, Error Compensation in Optical Devices (Mashinostroenie, Leningrad, 1985).
11. M. P. Kolosov, Optics Adaptive Protractors: Introduction to Design (Logos, Moscow, 2011).
12. G. V. Pogarev, Adjustment of Optical Devices (Mashinostroenie, Leningrad, 1968).
13. GOST 8.046-2010, “Optical dividing heads: method of verification.”
14. V. S. Mikheachev and N. N. Popov, Design and Manufacture of Geodetic Instruments (MIIGAiK, Moscow, 2006).
15. A. I. Spiridonov, Theodolites (Nedra, Moscow, 1985).
16. M. P. Kolosov and A. Ya. Gebgart, “Turning-angle sensor,” Russian patent 2644994 (2017).