DOI: 10.17586/1023-5086-2019-86-04-11-16
УДК: 535.417
Efficiency of a laser radiation source with coherent pulse combining
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Алексеев В.А., Зарипов М.Р., Ситникова Е.А. Исследование эффективности лазерного источника излучения с когерентным суммированием импульсов // Оптический журнал. 2019. Т. 86. № 4. С. 11–16. http://doi.org/10.17586/1023-5086-2019-86-04-11-16
Alekseev V.A., Zaripov M.R., Sitnikova E.A. Efficiency of a laser radiation source with coherent pulse combining [in Russian] // Opticheskii Zhurnal. 2019. V. 86. № 4. P. 11–16. http://doi.org/10.17586/1023-5086-2019-86-04-11-16
V. A. Alekseev, M. R. Zaripov, and E. A. Sitnikova, "Efficiency of a laser radiation source with coherent pulse combining," Journal of Optical Technology. 86(4), 204-208 (2019). https://doi.org/10.1364/JOT.86.000204
The principle of operation of systems that allow the construction of laser sources of pulsed radiation, in which a multifold increase in the peak output power of the radiation is achieved without increasing the energy of the power sources, is described, and the corresponding block diagrams are presented. The efficiency of devices with coherent synchronous combining using a single-frequency helium–neon laser emitting at 632.8 nm and an erbium laser emitting at 1550 nm in their composition is analyzed. Graphs showing the efficiency of systems with helium–neon and erbium lasers versus the number of fiber-optic delay lines are plotted. It is shown that the highest efficiency in the devices considered here can be achieved using radiation at a wavelength of 1550 nm.
peak power of radiation, fiber-optic delay line, optical losses, efficiency coefficient
OCIS codes: 140.3538, 030.1670
References:1. A. A. Andreev, “Superstrong light (achievements and prospects),” J. Opt. Technol. 85(11), 671–678 (2018) [Opt. Zh. 85(11), 19–28 (2018)].
2. S. A. Semikov, Laser Pulse Compression Methods (N. I. Lobachevskiı˘ NIU NGU, Nizhniı˘ Novgorod, 2011).
3. A. Motes, Laser Beam Combining Methods (AM Photonics, Rio-Rancho, 2015).
4. N. I. Bushmelev, V. N. Krivoshein, S. L. Pogorelskiı˘, A. V. Sbrodov, V. F. Lazukin, and A. G. Shipunov, “The optical radiation adder,” Russian patent 2182346 (2002).
5. A. Brignon, Coherent Laser Beam Combining (Wiley-VCH, Weinheim, 2013).
6. V. A. Alekseev, A. S. Perminov, and S. I. Yuran, “Increasing the peak power of a pulsed laser source using optical delay lines,” J. Opt. Technol. 85(12), 746–751 (2018) [Opt. Zh. 85(12), 8–14 (2018)].
7. V. A. Alekseev, S. I. Yuran, A. S. Perminov, and M. A. Sterkhova, “Pulsed laser radiation source,” Russian patent 2477553 (2013).
8. V. A. Alekseev, S. I. Yuran, A. S. Perminov, and M. A. Sterkhova, “Source of pulsed laser radiation,” Russian patent 2535529 (2014).
9. http://sphotonics.ru/catalog/skorostnye-elektroopticheskie-pereklyuchateli-nanospeed/npsw1kh1/.
10. http://sphotonics.ru/catalog/skorostnye-elektroopticheskie-pereklyuchateli-nanospeed/nssw1kh4/.
11. http://sphotonics.ru/catalog/magnetooticheskie-pereklyuchateli-crystalatch/clsw1x16/.
12. http://www.generalphotonics.com/index.php/product/fps-001-phase-shifter/.
13. http://sphotonics.ru/catalog/obediniteli-summatory-nakachki/psc181/.
14. N. V. Nikonorov and A. I. Sidorov, Fiber Optic Materials and Technologies: Special Optical Fibers (SPbGU ITMO, St. Petersburg, 2009).
15. G. Agrawal, Nonlinear Fiber Optics (Elsevier, 1996; Mir, Moscow, 1996).
16. N. N. Slepov, Optical Fiber as a Transmission Medium, Fiber-Optic Technology: Current State and New Perspectives (Tekhnosfera, Moscow, 2010), pp. 25–50.
17. I. H. Malitson, “Interspecimen comparison of the refractive index of fused silica,” J. Opt. Soc. Am. 55(10), 1205–1209 (1965).