DOI: 10.17586/1023-5086-2019-86-04-17-21
УДК: 53.082.531
Method for measuring the reflectance distribution over a spherical convex surface with large curvature
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Хоанг Л.Т., Губанова Л.А., Кирилловский В.К., Терещенко И.Б., Нгуен Д.Т. Методика измерения распределения коэффициента отражения по сферической выпуклой поверхности большой кривизны // Оптический журнал. 2019. Т. 86. № 4. С. 17–21. http://doi.org/10.17586/1023-5086-2019-86-04-17-21
Hoang L.T., Gubanova L.A., Kirillovskiy V.K., Tereshchenko I.B., Nguyen D.T. Method for measuring the reflectance distribution over a spherical convex surface with large curvature [in Russian] // Opticheskii Zhurnal. 2019. V. 86. № 4. P. 17–21. http://doi.org/10.17586/1023-5086-2019-86-04-17-21
T. L. Hoang, L. A. Gubanova, V. K. Kirillovskiĭ, I. B. Tereshchenko, and D. T. Nguyen, "Method for measuring the reflectance distribution over a spherical convex surface with large curvature," Journal of Optical Technology. 86(4), 209-212 (2019). https://doi.org/10.1364/JOT.86.000209
This paper presents a method for measuring the reflectance over the radial coordinates of the convex spherical surface of an optical component having a large curvature. The reflectance measurement results for both a clean surface and a surface with an antireflection coating are presented. Evaluation of the results obtained showed that the maximum relative error in the deviation of the reflectance from the theoretical calculation does not exceed 4.5%.
optical measurements, optical coatings, optical component with a large curvature, antireflection coating
Acknowledgements:The research was supported by the Ministry of Education and Science of the Russian Federation (Minobrnauka) (theme No. 3.2506.2017/4.6).
OCIS codes: 120.5700, 310.1210
References:1. S.-W. Yang, K.-L. Huang, C.-Y. Chen, and R.-S. Chang, “Wide-angle lens design,” in Classical Optics (2014), paper JTu5A.27.
2. H. P. Herzig, Microoptics: Elements, Systems and Applications (CRC Press, London, 1997).
3. G. Ruediger, Thin Film Microoptics: New Frontiers of Spatio-temporal Beam Shaping (Elsevier Science, Amsterdam, 2007).
4. D. Arifler, R. A. Schwarz, S. K. Chang, and R. Richards-Kortum, “Reflectance spectroscopy for diagnosis of epithelial precancer: model-based analysis of fiber-optic probe designs to resolve spectral information from epithelium and stroma,” Appl. Opt. 44(20), 4291–4305 (2005).
5. P. W. Baumeister, Optical Coating Technology (SPIE Press, Washington, 2004), vol. PM137.
6. H. A. Macleod, Thin-Film Optical Filters (CRC Press, Boca Raton, 2010).
7. http://www.essentoptics.com/f/file/LINZA150_rus_09112017.pdf.
8. M. Gharghi and S. Sivoththaman, “Design of anti-reflection coating for spherical silicon photovoltaic devices,” Proc. SPIE 7045, 704509 (2008).
9. M. M. Gurevich, Photometry (Theory, Methods, and Devices) (Energoatomizdat, Leningrad, 1983).
10. R. A. Sapozhnikov, Theoretical Photometry (Energiya, Leningrad, 1977).
11. S. Wang, S. Liu, J. Shao, T. Xu, Q. Lu, S. Qi, M. Feng, and L. Zhang, “Apparatus for measuring the uniformity of the optical transmittance of a semispherical surface at normal incidence,” Appl. Opt. 57(13), 3395–3400 (2018).
12. G. S. Landsberg, Optics (Fizmatlit, Moscow, 2003).
13. S. G. Nikiforov, “Measuring laboratory for a comprehensive study of the characteristics of LEDs used in data display systems,” Kompon. Tekhnol. 7, 170 (2007).
14. T. L. Hoang, L. A. Gubanova, and V. B. Nguyen, “Increasing antireflection area of large curvature optical components,” Komput. Opt. 41(6), 856–863 (2017).