DOI: 10.17586/1023-5086-2019-86-04-22-31
УДК: 621.9.08:535.317.2
Applicability limits of methods for assembling and adjusting axisymmetric two-mirror objectives with aspheric mirrors
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Вензель В.И., Данилов М.Ф., Савельева А.А., Семёнов А.А., Синельников М.И. Границы применимости методов сборки и юстировки осесимметричных двухзеркальных объективов с асферическими зеркалами // Оптический журнал. 2019. Т. 86. № 4. С. 22–31. http://doi.org/10.17586/1023-5086-2019-86-04-22-31
Venzel V.I., Danilov M.F., Savelieva A.A., Semenov A.A., Sinelnikov M.I. Applicability limits of methods for assembling and adjusting axisymmetric two-mirror objectives with aspheric mirrors [in Russian] // Opticheskii Zhurnal. 2019. V. 86. № 4. P. 22–31. http://doi.org/10.17586/1023-5086-2019-86-04-22-31
V. I. Venzel’, M. F. Danilov, A. A. Savil’eva, A. A. Semenov, and M. I. Sinel’nikov, "Applicability limits of methods for assembling and adjusting axisymmetric two-mirror objectives with aspheric mirrors," Journal of Optical Technology. 86(4), 213-221 (2019). https://doi.org/10.1364/JOT.86.000213
This article analyzes the relative mounting error of aspheric mirrors when various methods are used to assemble and adjust two-mirror objectives. Applicability limits, which depend on the f-number, effective diameter, and spectral range, are determined for methods of assembling and adjusting objectives. The relative adjustment error of the mirrors is estimated, using a two-mirror Ritchey–Chrétien objective as an example.
adjusting, linear and angular decentering, mirrors geometrical bases, axis of aspheric mirror
OCIS codes: 220.0220, 080.1005
References:1. V. Yu. Terebizh, Modern Optical Telescopes (Nauka/Interperiodika, Moscow, 2005).
2. N. N. Mikhel’son, “Mutual alignment of mirrors in two-mirror telescopes,” J. Opt. Technol. 63(3), 235–237 (1996) [Opt. Zh. 63(3), 66–68 (1996)].
3. A. P. Semenov and V. E. Patrikeev, “Method of measuring the decentering of the optical axis of an aspheric surface and a spherometer for carrying out the method,” Russian Patent 2,534,815 (2013).
4. V. G. Zubakov, “Measuring the decentering of optical components with aspheric surfaces,” Opt. Mekh. Prom. 39(4), 43 (1972).
5. V. I. Venzel’, M. F. Danilov, A. A. Savel’eva, and A. A. Semenov, “Use of coordinate measuring machines for the assembly of axisymmetric two-mirror objectives with aspherical mirrors,” J. Opt. Technol. 86(2), 119–123 (2019) [Opt. Zh. 86(2), 68–73 (2019)].
6. L. I. Krynin, Designing Objectives (Univ. ITMO, St. Petersburg, 2018).
7. V. I. Venzel’, A. A. Semenov, and M. I. Sinel’nikov, “Interference method for determining the position of the axis of an aspheric surface and a device for carrying it out,” Russian Patent 2,658,106 (2018).
8. V. S. Obraztsov, A. A. Ageichik, N. P. Larionov, O. A. Lebedev, A. V. Lukin, and S. V. Solk, “Alignment of Cassegrain telescope with Epps-Shulte focus,” Proc. Int. Symp. Meas. Technol. Intell. Inst. 3, 233–237 (2009).
9. V. P. Ivanov, N. P. Larionov, A. V. Lukin, and A. A. Nyushkin, “Method of adjusting two-mirror centered optical systems,” Russian Patent 2,375,676 (2009).
10. V. P. Ivanov, N. P. Larionov, A. V. Lukin, and A. A. Nyushkin, “Adjustment of two-mirror centered optical systems using synthesized holographic optical elements,” J. Opt. Technol. 77(6), 362–365 (2010) [Opt. Zh. 77(6), 14–18 (2010)].
11. V. I. Venzel’, A. V. Gorelov, and A. S. Gridin, “Interferometric method of adjusting two-mirror objectives with aspheric elements,” Russian Patent 2,561,018 (2015).