DOI: 10.17586/1023-5086-2018-86-04-32-37
УДК: 535, 528.1
Subpixel measurement of correlation algorithms based on Gaussian spot
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Hangcheng Zhou, Changhui Rao Subpixel measurement of correlation algorithms based on Gaussian spot (Субпиксельные измерения с использованием корреляционных алгоритмов на базе гауссовского распределения) [на англ. яз.] // Оптический журнал. 2019. Т. 86. № 4. С. 32–37. http://doi.org/10.17586/1023-5086-2019-86-04-32-37
Hangcheng Zhou, Changhui Rao Subpixel measurement of correlation algorithms based on Gaussian spot (Субпиксельные измерения с использованием корреляционных алгоритмов на базе гауссовского распределения) [in English] // Opticheskii Zhurnal. 2019. V. 86. № 4. P. 32–37. http://doi.org/10.17586/1023-5086-2019-86-04-32-37
Hangcheng Zhou and Changhui Rao, "Subpixel measurement of correlation algorithms based on a Gaussian spot," Journal of Optical Technology. 86(4), 222-226 (2019). https://doi.org/10.1364/JOT.86.000222
A theoretical study of general interpolation method is given, and different correlation algorithms based on Gaussian spot are compared. By using correlation algorithm combined with general interpolation, we can achieve a best interpolation method for different correlation algorithm. The best interpolation method for different correlation algorithms is achieved, meanwhile, we find that the best interpolation method is related to equivalent Gauss width of Gaussian spot under the ideal situations.
subpixel measurement, correlation algorithms, general interpolation method, Gaussian spot
OCIS codes: 100.0100, 100.3008
References:1. Zhou H.C., Zhang L.Q., Zhu L., Bao H., Guo Y.M., Rao X.J., Rao C.H. Comparison of correlation algorithms with correlating Shack–Hartmann wave-front images // International Society for Optics and Photonics. Beijing. 2016. P. 100261B.
2. Rao C.H., Zhu L., Rao X.J., Guan C., Chen D., Chen S., Lin J., Liu Z.Z. Performance of the 37-element solar adaptive optics for the 26 cm solar fine structure telescope at Yunnan Astronomical Observatory // Applied Optics. 2010. V. 49. № 31. P. G129–G135.
3. Poyneer L.A., Kai L.F., Carri C. Scene-based wave-front sensing for remote imaging // International Society for Optics and Photonics. San Diego. December 2003. V. 5162. P. 91–102.
4. Rao C.H., Zhang X.J., Jiang W.H. Simulation study on correlating Hartmann–Shack wavefront sensor for solar granulation // Acta Opt. Sin. 2002. V. 22. № 3. P. 285–289.
5. Li X., Cheng G., Lu L. Comparison of spatial interpolation methods // Advance in Earth sciences. 2000. V. 15. № 3. P. 260–265.
6. Dvornychenko V.N. Bounds on (deterministic) correlation functions with application to registration // IEEE Transactions on Pattern Analysis & Machine Intelligence. 1983. V. 5. № 2. P. 206–213.
7. Li Y., Zeng X., Shen C. Fitting algorithm of sine wave based on interpolation of parabola // Computer Engineering & Design. 2009. V. 30. № 11. P. 2793–2795.