ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2019-86-04-38-44

УДК: 535.417, 535.317, 778.38

How the nonlinearity of synthesized holograms affects their imaging properties

For Russian citation (Opticheskii Zhurnal):

Корешев С.Н., Смородинов Д.С., Старовойтов С.О. Влияние нелинейности синтезированных голограмм на их изображающие свойства  // Оптический журнал. 2019. Т. 86. № 4. С. 38–44. http://doi.org/10.17586/1023-5086-2019-86-04-38-44

 

Koreshev S.N., Smorodinov D.S., Starovoytov S.O. How the nonlinearity of synthesized holograms affects their imaging properties [in Russian] // Opticheskii Zhurnal. 2019. V. 86. № 4. P. 38–44. http://doi.org/10.17586/1023-5086-2019-86-04-38-44  

For citation (Journal of Optical Technology):

S. N. Koreshev, D. S. Smorodinov, and S. O. Starovoĭtov, "How the nonlinearity of synthesized holograms affects their imaging properties," Journal of Optical Technology. 86(4), 227-231 (2019). https://doi.org/10.1364/JOT.86.000227

Abstract:

This paper discusses the main features of image formation by means of synthesized holograms, caused by the inherent nonlinearity of the mathematical description of the holographic field. Special attention is paid to discrete halftone and binary holograms, which are a limiting case of nonlinear holograms. Recommendations are given for choosing synthesis conditions that make it possible to obtain a reconstructed image identical to the object with the maximum number of allowable threshold-processing levels.

Keywords:

nonlinearity, synthesized holograms, binary holograms, photolithography, imaging properties

Acknowledgements:

The research was supported by the Ministry of Education and Science of the Russian Federation (Minobrnauka) (theme No. 3.2506.2017/4.6).

OCIS codes: 090.0090

References:

1. L. Martinez-Leon, P. Clemente, Y. Mori, V. Climent, J. Lancis, and E. Tajahuerce, “Single-pixel digital holography with phase-encoded illumination,” Opt. Express 25(5), 4975–4984 (2017).
2. P. W. M. Tsang, T.-C. Poon, and Y. M. Wu, “Review of fast methods for point-based computer-generated holography,” Photon. Res. 6(9), 837–846 (2018).
3. A. M. Morozov and I. V. Kononov, Optical Holographic Devices (Mashinostroenie, Moscow, 1988).
4. A. I. Gusev, Nanomaterials, Nanostructures, Nanotechnologies (Nauka-Fizmatlit, Moscow, 2007).
5. C. Bay, N. Hübner, J. Freeman, and T. Wilkinson, “Maskless photolithography via holographic optical projection,” Opt. Lett. 35(13), 2230–2232 (2010).
6. R. J. Collier, C. B. Burckhardt, and L. H. Lin, Optical Holography (Academic Press, New York, 1971; Mir, Moscow, 1973).
7. M. D. Levenson, K. M. Johnson, V. C. Hanchett, and K. Chiang, “Projection photolithography by wave-front conjugation,” J. Opt. Soc. Am. 71(6), 737–743 (1981).
8. S. N. Koreshev, O. V. Nikanorov, and D. S. Smorodinov, “How the discreteness of synthesized and digital holograms affects their imaging properties,” Komp. Opt. 40(6), 793–801 (2016).
9. S. N. Koreshev, O. V. Nikanorov, and A. D. Gromov, “Method of synthesizing hologram projectors based on breaking down the structure of an object into typical elements, and a software package for implementing it,” J. Opt. Technol. 79(12), 769–774 (2012) [Opt. Zh. 79(12), 30–37 (2012)].
10. S. Johnson, Stephen Johnson on Digital Photography (O’Reilly Media, Inc., Sebastopol, California, 2006).
11. S. N. Koreshev, Fundamentals of Holography and Holographic Optics (Universitet ITMO, St. Petersburg, 2016).
12. R. R. Bikkenin and M. N. Chesnokov, Theory of the Electric Bond (Izd. Tsentr Akad., Moscow, 2010).
13. S. N. Koreshev, O. V. Nikanorov, D. S. Smorodinov, and A. D. Gromov, “How the method of representing an object affects the imaging properties of synthesized holograms,” J. Opt. Technol. 82(4), 246–251 (2015) [Opt. Zh. 82(4), 66–73 (2015)].
14. Y. Zhang, Q. Lu, and B. Ge, “Elimination of zero-order diffraction in digital off-axis holography,” Opt. Commun. 240(4–6), 261–267 (2004).
15. G. Chen, C. Lin, M. Kuo, and C. Chang, “Numerical suppression of zero-order image in digital holography,” Opt. Express 15(14), 8851–8856 (2007).
16. K. V. Ezhova, Image Modeling and Processing (NIU ITMO, St. Petersburg, 2011).
17. A. Fedorov, “Binarization of black-and-white images: development status and prospects,” in Intelligent Technologies and Systems, Yu. N. Fillipova, ed. (Izd. MGUP, Moscow, 2002).
18. A. A. Yankovski and A. N. Bugri, “Selection criteria for the binarization method for image processing of laboratory analyses,” in The Automated Directory and Documentation System and Automation Devices, All-Ukraine Interagency Science-and-Engineering Symposium (Izd. KhNURÉ, Khar’kov, 2010), vol. 153, pp. 53–56.
19. S. N. Koreshev, D. S. Smorodinov, O. V. Nikanorov, and A. D. Gromov, “Intensity equalization for elements for binary-object images reconstructed using synthesized hologram projectors,” Opt. Spectrosc. 114(2), 288–292 (2013) [Opt. Spektrosk. 114(2), 150–155 (2013)].